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ABSTRACT OF DISSERTATION

QUANTILE REGRESSION MODELS OF
ANIMAL HABITAT RELATIONSHIPS

Typically, all factors that limit an organism are not measured and included in

statistical models used to investigate relationships with their environment.  If important

unmeasured variables interact multiplicatively with the measured variables, the

statistical models often will have heterogeneous response distributions with unequal

variances.  Quantile regression is an approach for estimating the conditional quantiles

of a response variable distribution in the linear model, providing a more complete view

of possible causal relationships between variables in  ecological processes.  Chapter 1

introduces quantile regression and discusses the ordering characteristics, interval nature,

sampling variation, weighting, and interpretation of  estimates for homogeneous and

heterogeneous regression models.  Chapter 2 evaluates performance of quantile

rankscore tests used for hypothesis testing and constructing confidence intervals for

linear quantile regression estimates (0 �  � 1).  A permutation F test maintained better

Type I errors than the Chi-square T test for models with smaller n, greater number of

parameters p, and more extreme quantiles .  Both versions of the test required

weighting to maintain correct Type I errors when there was heterogeneity under the

alternative model.  An example application related trout densities to stream channel

width:depth.  Chapter 3 evaluates a drop in dispersion, F-ratio like permutation test for

hypothesis testing and constructing confidence intervals for linear quantile regression
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estimates (0 �  � 1).  Chapter 4 simulates from a large (N = 10,000) finite population

representing grid areas on a landscape to demonstrate various forms of hidden bias that

might occur when the effect of a measured habitat variable on some animal was

confounded with the effect of another unmeasured variable (spatially and not spatially

structured).   Depending on whether interactions of the measured habitat and

unmeasured variable were negative (interference interactions) or positive (facilitation

interactions), either upper ( >0.5) or lower ( < 0.5) quantile regression parameters

were less biased than mean rate parameters.  Sampling (n = 20 - 300) simulations

demonstrated that confidence intervals constructed by inverting rankscore tests

provided valid coverage of these biased parameters.  Quantile regression was used to

estimate effects of physical habitat resources on a bivalve mussel (Macomona liliana)

in a New Zealand harbor by modeling the spatial trend surface as a cubic polynomial of

location coordinates.

Brian S. Cade
Graduate Degree Program

In Ecology
Colorado State University
Fort Collins, CO 80523
Spring 2003
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Chapter 1

A Gentle Introduction to Quantile Regression for Ecologists

Abstract: Typically, all factors that limit an organism are not measured and included in

statistical models used to investigate relationships with their environment.  If important

unmeasured variables interact multiplicatively with the measured variables, the

statistical models often will have heterogeneous response distributions with unequal

variances.  As a consequence, there may be no or weak predictive relationship between

the mean of the response variable (y) distribution and the measured environmental

factors.  Yet, there may be stronger, useful predictive relationships with other parts of

the response variable distribution.  Quantile regression is an approach for estimating the

conditional quantiles of a response variable distribution in the linear model, providing a

more complete view of possible causal relationships between variables in  ecological

processes.  This introduction relates quantile regression to estimates of prediction

intervals in parametric error distribution models (e.g., least squares regression) and

discusses the ordering characteristics, interval nature, sampling variation, weighting,

and interpretation of the estimates for homogeneous and heterogeneous regression

models.  The motivation is to address the large variation often found in relationships

between ecological variables and the presumed causal factors that is not attributed to

random sampling variation.  These models are useful when the response variable is

affected by more than one factor, factors vary in their effect on the response, not all
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factors are measured, and the multiple limiting factors interact. 

1. Introduction

Regression is a common statistical method employed by scientists to investigate

relationships between variables, where a response variable y is some function of

predictor variables X,  y = f(X).  Most regression applications in the ecological sciences,

whether linear or nonlinear in the parameters or nonparametric, focus on estimating

rates of change associated with the mean of the response variable distribution as some

function of a set of predictor variables, i.e., the function is defined for the expected

value of y conditional on X, E(y|X).  Mosteller and Tukey (1977) noted that it was

possible to fit regression curves to other parts of the distribution of the response

variable, but that this was not commonly done and, thus, most regression analyses gave

an incomplete picture of the relationships between variables.  Heterogeneous variances

are pervasive in regression models used to estimate relationships between variables in

ecology.  An exclusive focus on effects (regression slope coefficients) associated with

changes in the means may under estimate, over estimate, or fail to distinguish real

nonzero changes in heterogeneous response variable distributions (Terrell et al. 1996,

Cade et al. 1999).  

Regression quantiles were developed by econometricians in the 1970's (Koenker

and Bassett 1978) as a straight forward, semiparametric extension of the linear model to

estimate rates of change in all parts of the distribution of the response variable.  They

are semiparametric in the sense that no parametric distributional form (e.g., normal,

Poisson, negative binomial, etc.) is assumed for the error distribution.   Recent literature
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(Cade et al. 1999, Koenker and Machado 1999, Koenker and Hallock 2002) denotes the

quantiles by the Greek , where  � [0, 1], although this notation is by no means

universal.  The conditional quantiles denoted by Q ( |X) are the inverse of they

conditional cumulative distribution function of the response variable, F ( |X) . Fory
-1  

example, for  = 0.90, Q (0.90|X) is the 90  percentile of the distribution of yy
th

conditional on the values of X, i.e., 90% of the values of y are less than or equal to the

specified function of X.  Note, that for symmetric distributions the 0.50 quantile (or

median) is equal to the mean µ.  Here I consider functions of X that are linear in the

parameters, e.g., 
�

( )X  + � ( )X  + � ( )X  +, ..., + � ( )X , where the () notation0 0 1 1 2 2 p p

indicates that the parameters are for a specified  quantile.  The parameters vary due to

effects of the th quantile of the unknown error distribution � . Quantile regression

provides a very flexible method of modeling the rates of change in the response variable

at multiple points of the distribution for both homogeneous and heterogeneous error

models, providing a much more complete picture of the relationships between variables 

(Koenker and Machado 1999). 

In the 1-sample setting with no predictor variables, estimating quantiles is

usually thought of as a process of ordering the sample data.  The beauty of the extension

to the regression model was recognizing that quantiles could be estimated by an

optimization function minimizing a sum of weighted absolute deviations, where the

weights are functions of  (Koenker and Machado 1999, Koenker and Hallock 2002). 

Currently, the statistical theory and computational routines for estimating and making

inferences on regression quantiles are best developed for the linear model
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(Gutenbrunner et al. 1993, Koenker 1994, Koenker and Machado 1999) but also are

available for parametric nonlinear (Welsh et al. 1994, Koenker and Park 1996) and

nonparametric,  nonlinear smoothers (Koenker et al. 1994, Yu and Jones 1998). 

Improved methods of testing hypotheses and inverting hypothesis tests for constructing

confidence intervals on parameters of linear regression quantile models are the topics of

Chapters 2 and 3.

There have been a variety of applications of quantile regression in ecology and

biology, including studies of animal habitat relationships (Terrell et al. 1996, Haire et

al. 2000, Eastwood et al. 2001, Dunham et al. 2002), prey and predator size

relationships (Scharf et al. 1998), body size of deep-sea gastropods and dissolved

oxygen concentration (McClain and Rex 2001), vegetation changes associated with

agricultural conservation practices (Allen et al. 2001), variation in nuclear DNA of

plants across environmental gradients (Knight and Ackerly 2002), Mediterranean fruit

fly survival (Koenker and Geling 2001), running speed and body mass of terrestrial

mammals (Koenker et al. 1994), global temperature change over the last century

(Koenker and Schorfheide 1994), and plant self-thinning (Cade and Guo 2000).  Many

applications have used regression quantiles as a method of estimating functional rates

of change along or near the upper boundary of the conditional distribution of responses

because of issues raised by Kaiser et al. (1994), Terrell et al. (1996), Thomson et al.

(1996), Cade et al. (1999), and Huston (2002).  These authors suggested that if

ecological limiting factors act as constraints on organisms, then the estimated effects for

the measured factors were not well represented by changes in the means of response
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variable distributions when there were many other unmeasured factors that were

potentially limiting.  The response of the organism cannot change by more than some

upper limit set by the measured factors but may change by less when other unmeasured

factors are limiting.  This analytical problem is closely related to the more general

statistical issue of hidden bias in observational studies due to confounding with

unmeasured variables (Rosenbaum 1995, 1999).  The multiplicative interactions among

measured and unmeasured ecological factors that contribute to this pattern are explored

in more detail relative to regression quantile estimates and inferences in Chapter 4.

Although many of the initial ecological applications of quantile regression

focused on estimating a subset of the upper regression quantiles (e.g.,  > 0.90) to

identify effects of limiting factors, it is possible to obtain estimates across the entire

interval of quantiles ( � [0, 1]) as a flexible method of modeling distributional changes

conditional on some set of covariates.  Regression quantile estimates can help reveal

effects of important variables that were not measured by providing a more complete

view of heterogeneous effects in the response distribution (Chapter 4).  Quantile

regression models present many new possibilities for statistical analyses and

interpretations of ecological data (Cade et al. 1999, Cade and Guo 2000).  With those

new possibilities come many new challenges related to estimation, inference, and

interpretation.  Here I provide an overview of several of the issues ecologists are likely

to encounter when conducting and interpreting quantile regression analyses.  More

technical discussion is provided in the relevant literature cited.
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2. Quantiles and ordering in the linear model

Regression quantile estimates are an ascending sequence of planes that are above an

increasing proportion of sample observations with increasing values of the quantiles 

(Fig. 1.1A).  It is this operational characteristic of regression quantiles that extends the

concepts of quantiles, order statistics, and rankings to the linear model (Gutenbrunner et

al. 1993, Koenker and Machado 1999, Koenker and Hallock 2002)   The proportion of

observations less than or equal to a given regression quantile estimate, e.g., the 90th

percentile given by Q (0.90|X) in Figure 1.1A, will not in general be exactly equal to . y

The simplex linear programming solution minimizing the sum of weighted absolute

deviations ensures that any regression quantile estimate will fit through at least p + 1 of

the n sample observations for a model with p + 1 predictor variables X.  This results in a

set of inequalities defining a range for the proportion of observations less than or equal

to any selected quantile  given n and p (Cade et al. 1999, Koenker and Machado 1999). 

Regression quantiles, like the usual 1-sample quantiles with no predictor

variables, retain their statistical properties under any (linear or nonlinear) monotonic

transformation of y as a consequence of this ordering property, i.e., they are equivariant

under monotonic transformation of y (Koenker and Machado 1999).  Thus it is possible

to use a nonlinear transformation (e.g., logarithmic) of y to estimate linear regression

quantiles and then back transform the estimates to the original scale (a nonlinear

function)without any loss of information.  This, of course, is not possible with means,

including those from regression models. 
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median = 0 and σ = 0.75) model, y = β0 + β1X1 + ε, β0 = 6.0 and β1 = 0.05 with 0.90,
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are the thin solid lines.  Dashed lines connect endpoints of 90% confidence intervals.
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The examples presented here have been kept to simple linear regression models

with just an intercept and a single predictor variable for simplicity of presentation. 

More complicated linear models involving a mix of categorical (indicator variables) and

multiple continuous variables and their interactions are possible (Cade et al. 1999,

Dunham et al. 2002).  The parameter estimates in regression quantile linear models

have the same interpretation as those in any other linear model.  They are rates of

change conditional on adjusting for the effects of the other variables in the model.

3. Homogeneous and heterogeneous models

The simplest, unconstrained form of the regression quantile estimates allows the

predictor variables (X) to exert changes on the central tendency, variance, and shape of

the response variable (y) distribution (Koenker and Machado 1999, Koenker and

Hallock 2002).  This is possible without modification of the model specified as a

function of the predictor variables.  When the only estimated effect is a change in

central tendency (e.g., means) of the distribution of y conditional on the values of X, we

have the familiar homogeneous variance regression model associated with ordinary

least squares regression (Fig. 1.1A).  All the regression quantile slope estimates b ( )1

are for a common parameter and any deviation among the regression quantile estimates

is simply due to sampling variation (Fig. 1.1C).  An estimate of the rate of change in the

means from ordinary least squares regression also is an estimate of the same parameter

as for the regression quantiles. The intercept estimates b ( ) of the regression quantile0

model are for the parametric quantile, � ( ), of y when X  = 0, which differ across0 1

quantiles  and for the mean µ (Fig. 1.1B).  Intercept estimates differ across quantiles
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both because of sampling variation and because the parameters differ.  Here the primary

virtue of the regression quantile estimates of the intercept is that they are not dependent

on an assumed form of the error distribution as when least squares regression is used,

which assumes a normal error distribution.

The properties associated with the intercept translate to any other fixed value of

X , X , ..., X  as when estimating prediction intervals for some specified value of the1 2 p

predictor variables (Neter et al. 1996).  The interval between the 0.90 and 0.10

regression quantile estimates in Figure 1.1A at any specified value of X = x is an 80%

prediction interval for a single future observation.  Prediction intervals for some number

of future observations that assume a normal error distribution as is done in ordinary

least squares regression are sensitive to departures from the distributional assumptions

(Neter et al. 1996), whereas regression quantile estimates avoid this distributional

assumption altogether.  Given the skewness in the response distribution in Figure 1.1A

it is easy to see that a symmetric prediction interval about an estimate of the mean

would not have correct coverage, as would occur if we assumed a normal error

distribution model.  For example at X = 70.5 the 80% prediction interval for a single

new observation is 8.43 - 10.97 based on the least squares estimate assuming a normal

error distribution, whereas the interval based on the 0.90 and 0.10 regression quantile

estimates is 8.85 - 10.88.  Zhou and Portnoy (1996) provided an empirical evaluation of

various intervals based on regression quantile estimates.  Simultaneous prediction

intervals for all X (tolerance bands) based on inverting quantile rankscore tests are

discussed in Chapter 2 and 4. 
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When the predictor variables X exert both a change in means and a change in

variance on the distribution of y, we have a regression model with unequal variances (a

location/scale model in statistical terminology).  As a consequence, changes in the

quantiles of y across X cannot be the same for all quantiles  (Fig. 1.2).  The slope

estimates b ( ) differ across quantiles both because of sampling variation and because1

the parameters differ since the variance in y changes as a function of X (Fig. 1.2C). 

Note that in this regression model with heterogeneous variances the pattern of changes

in estimates b ( ) mirror those for b ( ).  In this situation ordinary least squares0 1

regression is commonly modified by incorporating weights (that usually have to be

estimated) that are inversely proportional to the variance function (Neter et al. 1996). 

Typically, the use of weighted least squares is done to improve estimates of the

sampling variation for the estimated mean function, and not done specifically to

estimate the different rates of change in the quantiles of the distributions of y

conditional on X.  However, Hubert et al. (1996) and Gerow and Bilen (1999) described

applications of least squares regression where this might be done.  Estimating

prediction intervals for some number of future observations based on weighted least

squares estimates implicitly recognize these unequal rates of change in the quantiles of

y (e.g., Cunia 1987).

Generalized linear models offer alternative ways to link changes in the variances

( ) of y with changes in the mean (µ) based on assuming some specific distributional2

form in the exponential family, e.g., Poisson, negative binomial, gamma (McCullagh

and Nelder 1989).  But, again, the purpose usually is to provide better  
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are the thin solid lines.  Dashed lines connect endpoints of 90% confidence intervals.
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estimates of rates of change in the mean (µ) of y rather than estimates in the changes in

the quantiles of y which must occur when variances are heterogeneous.  Estimating

prediction intervals for generalized linear models would implicitly recognize that rates

of change in the quantiles of y cannot be the same for all quantiles, and these interval

estimates would be linked to and sensitive to violations of the assumed error

distribution.

An advantage of the regression quantile approach to modeling heterogeneous

variation in distributions of the responses is that no specification of how the variance

changes are linked to the mean are required.  Furthermore, it is possible for the

predictor variables to also exert changes in the shape of the distributions (Koenker and

Machado 1999, Koenker and Hallock 2002).  Complicated changes in central tendency,

variance, and shape of distributions are common in statistical models applied to

observational data because of model misspecification.   Model misspecification can

occur because the appropriate functional forms are not used (e.g., linear instead of

nonlinear) and because all relevant variables are not included in the model (Cade et al.

1999, Chapter 4).  Failure to include all relevant variables does not necessarily occur

because of scientific neglect but because of insufficient knowledge of or ability to

measure all relevant processes.  This should be considered the norm for observational

studies in ecology as it is in many other scientific disciplines.

An example of a response distribution pattern that may involve changes in

central tendency, variance, and shape is in Figure 1.3.  These data from Irwin and Cook

(1985) and Cook and Irwin (1985) were collected to estimate how pronghorn
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(Antilocapra americana) densities changed with features of their habitat on winter

ranges.  Here shrub canopy cover was the habitat feature used as an indirect measure of

the amount of winter forage available.  Note that rates of change in pronghorn densities

due to shrub canopy cover (b ) were fairly constant for the lower 1/3 of the quantiles1

(0.25 per change in % cover), increased moderately in rate for the central 1/3 of the

quantiles (0.25 to 0.50), and doubled (0.50 to 1.0) in the upper 1/3 of the quantiles

(Fig.1.3C).  The changes in b ( ) do not appear to mirror those for b ( ) indicating that1 0

there is more than just a change in central tendency and variance of pronghorn densities

associated with changes in shrub canopy cover.  Clearly, too strong a conclusion is not

justified with the small sample (n =28) and large sampling variation for upper quantiles

as indicated by 90% confidence intervals on the estimates.  But either an ordinary least

squares regression estimate (b  = 0.483, 90% CI = 0.31- 0.66) or more appropriate1

weighted least squares regression estimate would fail to recognize that pronghorn

densities changed at both lower and higher rates as a function of shrub canopy cover at 

lower and upper quantiles of the density distribution, respectively.   Here, the regression

quantile estimates provide a more complete characterization of an interval of changes in

pronghorn densities that were associated with changes in winter food availability as

measured by shrub canopy cover.  These intervals are fairly large because pronghorn

densities on winter ranges are almost certainly affected by more processes than just

food availability as represented by shrub canopy cover.  

4. Estimates are for intervals of quantiles

Regression quantile estimates break the interval  � [0, 1] into a finite number of 
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smaller, unequal length intervals.  Thus, while we may refer to and graph the estimated

function for a selected regression quantile such as the 0.90, the estimated function

actually applies to some small interval of quantiles, e.g.,  [0.894, 0.905] for the 0.90

regression quantile in Figure 1.1.  Unlike the 1-sample quantile estimates, the [0, 1]

interval of regression quantile estimates may be broken into more than n intervals that

aren’t necessarily of equal length 1/n.  The number and length of these intervals are

dependent on the sample size, number or parameters, and distribution of the response

variable.  Estimates plotted as step functions in Figure 1.1B and C are for 101 intervals

of quantiles on the interval [0, 1] for which each has an estimate b ( ) and b ( ),0 1

corresponding to the intercept and slope.  Because the estimates actually apply to a

small interval of quantiles, it is appropriate to graph the estimates by intervals of

quantiles as a step function (Fig. 1.1B and C).  Graphing estimates as a step function by

quantiles becomes essential when there are >2 predictor variables in a model.  For a

finite sample size n and p + 1 predictor variables X , X , X , ..., X  (X  is a column vector0 1 2 p 0

of 1's for an intercept), the maximum number of unique regression quantile estimates on

 � [0, 1] is of order nlog(n) (Koenker and d’Orey 1987, Portnoy 1991).

5. Sampling variation differs across quantiles

It should come as little surprise that the sampling variation can differ among quantiles . 

Generally, sampling variation will increase as the value of  approaches 0 or 1, but the

specifics are dependent on the data distribution, model fit, sample size n, and number of

parameters p.  Estimates further from the center of the distribution (the median or 50th

percentile given by Q (0.50|X)) usually cannot be estimated as precisely.  To display they
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sampling variation with the estimates (Fig. 1.1B and C), a confidence band across the

quantiles  � [0, 1] was constructed by estimating the pointwise confidence interval for

19 selected quantiles  � [0.05, 0.10, ..., 0.95].  These intervals were based on inverting

a quantile rankscore test (Koenker 1994, Cade et al. 1999, Koenker and Machado 1999,

Chapter 2).  It is possible to compute confidence intervals for all unique intervals of

quantiles but this computational effort is not usually required to obtain a useful picture

of the estimates and their sampling variation.  The endpoints of the confidence intervals

were not connected across quantiles as a step function because they were only estimated

for a subset of all possible quantiles.

Other procedures for constructing confidence intervals than the rankscore test

inversion exist, including the direct order statistic approach (Zhou and Portnoy 1996,

1998), a drop in dispersion permutation test (Chapter 3), and various asymptotic

methods dependent on estimating the variance/covariance matrix and the quantile

density function (Koenker and Machado 1999).  An advantage of the rankscore test

inversion approach is that it turns the regression quantile inference problem into one

solved by least squares regression for which there already exists a wealth of related

theory and methods (Chapter 2).

In the example in Figure 1.1, the 90% confidence intervals for both the intercept

(
�

) and slope (
�

) are narrower at lower quantiles, consistent with the fact that the data0 1

were generated from a lognomal error distribution (median = 0,  = 0.75) which had

higher probability density and, thus, less sampling variation at lower quantiles.  Also

note that the endpoints of the confidence intervals estimated by inverting the quantile
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rankscore test are not always symmetric about the estimate (Koenker 1994), which is

consistent with the skewed sampling distribution of the estimates for smaller n and

more extreme quantiles.  The population parameters for the intercept, � ( ), and slope,0

�
( ), are contained within the 90% confidence intervals for most quantiles  (Fig. 1.1B1

and C).

6. Second order properties of the estimates are useful

The rates of change across quantiles in the slope parameter estimates (e.g., Fig. 1.3C)

can be used to provide additional information that can be incorporated into the model to

provide estimates with less sampling variation.  The sampling variation of a selected 

regression quantile estimate is affected by changes in the parameters in some local

interval surrounding the selected quantile, say  ± h, where h is some bandwidth

(Koenker and Machado 1999).  Weighted regression quantile estimates can be based on

weights that are inversely proportional to the differences in estimates for some local

interval of quantiles, e.g., 0.90 ± 0.06 (Koenker and Machado 1999, Chapter 4).  A

variety of methods have been proposed for selecting appropriate bandwidths (Koenker

and Machado 1999).  The difference between the local interval approach to constructing

weights and estimating the variance function to construct weights as for weighted least

squares regression (e.g., Neter et al. 1996:400-409) is that the former approach allows

the weights to vary for different quantiles, whereas the latter approach assumes

common weights for all quantiles (Chapter 4).  Differential weights by quantiles are

more appropriate for patterns of response similar to those in Figure 1.3 where a second

order analysis suggested that rates of change in the estimates were not likely just due to
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changes in means and variances because the changes in b ( ) across quantiles did not1

mirror those of  b ( ).  Common weights for all quantiles are appropriate for patterns of0

responses similar to those in Figure 1.2 where only location and scale changes occurred

as indicated by changes in b ( ) across quantiles that mirrored those of b ( ).1 0

7. Discussion

Estimating quantiles of the response distribution in regression models is not new.  This

has always been required for constructing prediction and tolerance intervals for future

observations, but has usually been done only in a fully parametric model where the

error distribution takes some specified form.  In the full parametric model the various

quantiles of the response distribution are estimated by a specified multiple of the

estimated standard deviation of the parametric error distribution which is then added to

the estimated mean function.  Vardeman (1992) stressed the importance of prediction

(for some specified number of future observations) and tolerance intervals (for a

proportion of the population and thus any number of future observations) in statistical

applications.  Much current statistical practice with linear models focuses on estimating

confidence intervals on parameters.  The difference between prediction/tolerance

intervals and confidence intervals is that the former deal with the sampling variation of

individual observations and the latter with the sampling variation of parameter

estimates (which are a function of the n observations).  Prediction and tolerance

intervals are far more sensitive to deviations from the assumed parametric error

distribution than are confidence intervals.  Regression quantile estimates can be used to

construct prediction and tolerance intervals without assuming some parametric error
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distribution and without specifying how variance heterogeneity is linked to changes in

means.

The additional advantage provided by regression quantiles is to directly estimate

changes in the quantiles of the distribution of responses conditional on the p predictor

variables, i.e., � ( ), � ( ), ..., � ( ), which cannot be equal for all quantiles  in models1 2 p

with heterogeneous error distributions.  Differences in rates of change at different parts

of the distribution are informative in a variety of ecological applications.  Complicated

forms of heterogeneous response distributions should be expected in observational

studies where many important processes may not have been included in the candidate

models.   From a purely statistical standpoint, higher rates of change associated with

some more extreme quantiles (e.g.,  >0.90 or  < 0.10) of the distribution may be

detected as different from zero in sample estimates more often (i.e., greater power) than

some central estimates such as the mean or median ( = 0.50).  This can occur because

greater differences between the parameter estimates and zero (no effect) can offset the

greater sampling variation often associated with the more extreme quantiles.  The use of

regression quantile estimates in linear models with unequal variances will permit

detection of effects associated with variables that might have been dismissed as

statistically indistinguishable from zero based on estimates of means (Terrell et al.

1996).

The ability to statistically detect more effects with regression quantiles than

conventional linear model procedures is not a panacea for investigating relationships

between variables.  Along with the greater ability to detect a multitude of effects comes
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the additional responsibility for the investigator to clearly articulate what is important to

the process being studied and why.  A search through all possible quantiles on a large

number of models with many combinations of variables for those with strong nonzero

effects is no more likely to produce useful scientific generalizations than similar

unfocussed modeling efforts using conventional linear model procedures.

Finally, software is currently available to provide a variety of quantile regression

analyses.  Scripts and fortran programs to work with S-Plus are available from the web

sites of Roger Koenker (www.econ.uiuc.edu~roger/research/home.html) and the

Ecological Archives E080-001 (www.esapubs.org/archive/ecol/ E080/001/

default.htm).  Add on packages for R are available from the Comprehensive R Archive

Network (lib.stat.cmu.edu/R/CRAN/).  Quantile regression estimates for linear models,

quantile rankscore tests, and permutation testing variants are available in the Blossom

statistical packaged available from the U. S. Geological Survey (www.fort.usgs.gov/

products/ software/blossom.asp).  Two econometrics commercial packages that provide

quantile regression are Stata and Shazam.        
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Chapter 2

 Rankscore and Permutation Testing Alternatives
for Regression Quantile Estimates

Abstract:  Performance of quantile rankscore tests used for hypothesis testing and

constructing confidence intervals for linear quantile regression estimates (0 �  � 1)

were evaluated for conditions relevant to ecological investigations of animal responses

to their physical environment.  Conditions evaluated included models with 2 - 6

predictors, moderate collinearity among predictors, homogeneous and heterogeneous

errors, small to moderate samples (n = 20 - 300), and central to upper quantiles (0.50 -

0.99).  Test statistics evaluated were the conventional quantile rankscore T statistic that

is distributed as a Chi-square random variable with q degrees of freedom (where q

parameters are constrained by H :) and an F statistic with its sampling distribution0

approximated by permutation or by an F distribution.  The permutation F test

maintained better Type I errors than the T test for models with smaller n, greater

number of parameters p, and more extreme quantiles .  Both versions of the test

required weighting to maintain correct Type I errors when heterogeneity under the

alternative model increased to around 5 standard deviations across the domain of X.  A

double permutation scheme was found to improve Type I errors for the permutation F

test when null models were forced through the origin, as when testing the intercept or
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any parameter in weighted models.  Power was similar for conditions where both T and

F tests maintained correct Type I errors.  Confidence intervals on parameters and

tolerance intervals for future predictions were constructed based on test inversion for an

example application relating trout densities to stream channel width:depth.

1. Introduction

Estimating the quantiles (0 �  � 1) of a response variable conditional on some set of

covariates in a linear model has many applications in the biological and ecological

sciences (Terrell et al. 1996, Scharf et al. 1998, Cade et al. 1999, Cade and Guo 2000,

Haire et al. 2000, Eastwood et al. 2001, Dunham et al. 2002).  Quantile regression

models allow the entire conditional distribution of a response variable y to be related to

some covariates X,  providing a richer description of functional changes than is possible

by focusing on just the mean (or other central statistics), yet requiring minimal

distributional assumptions (Koenker and Bassett 1978, 1982,  Koenker and Machado

1999).  Quantile regression estimates are especially enlightening for relationships

involving heterogeneous responses where by definition rates of change are not the same

across all parts of the response distribution.

Regression quantile models have been used where scientific considerations

suggested that upper quantiles near the maximum better estimated effects of the

biological process being measured as a limiting constraint (Cade et al. 1999, Cade and

Guo 2000, Huston 2002).  Statistical difficulties associated with characterizing limiting

factors in ecology occur because the measured factor(s) may limit an organism only at

some times or places, whereas other factors that were not measured may be limiting
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otherwise (Kaiser et al. 1994, Thomson et al. 1996, Cade et al. 1999, Cade and Guo

2000, Huston 2002).  Temporal and spatial shifts in ecological limiting factors are to be

expected.  In an observational study it is impossible to know whether the measured

covariates describe the factor actually limiting the organism at the time and location of

sampling.  Consequently, there may be large, unexplained heterogeneity in responses

across levels of the measured covariates such that rates of change are less for some

conditional central statistics (e.g., means or medians) compared to those for more

extreme parts of the distribution (e.g., 90 - 99   percentiles).  Heterogeneity induced byth

interaction effects of unmeasured but important processes (Cade et al. 1999, Huston

2002) creates a form of hidden bias typical in observational studies (Rosenbaum 1991,

1995).

Regression quantiles offer an estimation approach with considerable appeal both

for prediction and understanding, regardless of whether interest is in extreme quantiles

(e.g., 95 - 99  percentiles) for characterizing the boundary of a response distributionth

associated with some limiting factor (Cade and Guo 2000), or simply as a flexible

method of estimating effects associated with heterogeneous distributions (Allen et al.

2001).  Interpretations and properties of the estimated effects in regression quantiles are

similar to more familiar linear modeling procedures such as least squares regression,

but now are made for a family of quantiles in some interval that is selected based on

scientific considerations (Cade et al. 1999, Koenker and Machado 1999, Koenker and

Hallock In press).  Regression quantile estimates also have a useful property not shared

by estimates of means, equivariance under any monotonic transformation, that actually
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allows for simpler implementations and interpretations for transformable nonlinear

models (Buchinsky 1995, Cade et al. 1999, Koenker and Geling 2001).  

There is a well developed theory for estimating covariance matrices to provide

inferences with asymptotic validity for linear regression quantile models (Koenker and

Bassett 1978, 1982, Koenker and Machado 1999).  These covariance methods rely on

estimating the reciprocal of the error density function at the quantile of interest, 

 f(F (0)), i.e., the sparsity function.  Performance of these asymptotic covariance-1

methods at smaller sample sizes often is poor (Koenker 1987, Buchinsky 1991) and the

asymptotic theory becomes suspect at more extreme (>0.7 and <0.3) quantiles

(Chernozhukov and Umantsev 2001).  Koenker (1994) introduced the idea of

constructing confidence intervals by inverting a quantile rankscore test (Gutenbrunner

et al. 1993) which does not require estimating the sparsity function and was expected to

perform well under linear heteroscedastic regression models.  The quantile rankscore

test performed well at smaller sample sizes typically encountered in biological and

ecological investigations in the limited simulations of Koenker (1994).

Questions remain about performance of the quantile rankscore test and potential

modifications.  In typical unimodal error distributions where density of the errors

decreases as one moves away from the median, sampling variation and power of the

more extreme quantiles (e.g., the 0.95 quantile) will be reduced compared to more

central quantiles such as the median (0.50).  How rapidly performance erodes will be a

function of the error distribution, sample size, and number of parameters in a model.  It

was, thus, of interest to investigate performance of the quantile rankscore test across a
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range of quantiles, sample sizes, error distributions, and model structures to determine

where inferences become unreliable.  As the quantile of interest approaches 0

(minimum) or 1 (maximum), inferences may be more amenable to extreme value

testing theory than conventional testing approaches (Chernozhukov and Umantsev

2001).  The intercept parameter in a quantile regression model can be tested with the

quantile rankscore test, although this clearly is excluded by the general theory of

rankscore tests (Gutenbrunner et al. 1993).  If the quantile rankscore test for the

intercept parameter provides valid inferences, this procedure could be used for

constructing confidence intervals at any specified value of the covariates.  Extensions to

prediction and tolerance intervals for some regression model forms would then be

possible.  Although the quantile rankscore test was evaluated for some linear

heteroscedastic model forms and found to perform well (Koenker 1994), Koenker and

Machado (1999) recently proposed a weighted modification of the quantile rankscore

tests, where weights were a function of heterogeneity under the null hypothesis.  A

more systematic evaluation of the effects of heterogeneity on performance of the

quantile rankscore test would help determine when it is desirable to use a weighted

version of the test statistic.

Here I evaluated performance of the unweighted form of the quantile rankscore

test for central to extreme quantiles, a range of error structures, small to moderate

sample sizes, and model forms likely to be encountered in ecological applications

where the objective is to estimate some organism’s response to its environment.  Based

on relationships between the asymptotic Chi-square form of the quantile rankscore test
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statistic and an F-test in a linear model, I considered alternative versions of rankscore

tests that were evaluated by permutation arguments as well as by standard distributional

theory.  Weighted forms of the rankscore tests based on weighted quantile regression

estimates also were evaluated.  The alternative inference procedures were applied to a

quantile regression analysis of Lahontan cutthroat trout (Oncorhynchus clarki

henshawi) response to variations in their stream habitat, expanding on the previous

analyses of Dunham et al. (2002).

2. Quantile Regression Model

The regression quantile (0 �  � 1) for the heteroscedastic linear location-scale modelth 

y = X  +  is defined as Q ( �X) = X ( ) and ( ) =  + F ( ) ; where y is an n × 1y �
-1

vector of dependent responses,  is a p × 1 vector of unknown regression parameters, X

is an n × p matrix of predictors (first column consists of 1's for an intercept term),  is a 

p × 1 vector of unknown scale parameters,  is a diagonal n × n matrix where the n

diagonal elements are the n corresponding ordered elements of the n × 1 vector X

(diag(X )),  is an n × 1 vector of random errors that are independent and identically

distributed (iid), and F  is the inverse of the cumulative distribution of the errors� -1

(Koenker and Bassett 1982, Buchinsky 1991, Gutenbrunner and Jureková 1992,

Koenker and Machado 1999).  Homoscedastic regression models are a special case of

the linear location-scale model when  = (1,0,...,0)� and Q ( �X) = X ( ), ( ) =  +y

(F ( ),0,...,0)�, where all parameters other than the intercept (
�

) in ( ) are the same� 0
-1

for all .  More general forms of heteroscedastic errors can be accommodated with

regression quantiles (Koenker 1997, Koenker and Machado 1999) but were not
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 (1)

considered here.

The restriction imposed on F  to estimate regression quantiles is that a  � th

quantile of y - X ( ) conditional on X equals 0, F ( �X) = 0.  Estimates, b( ), of ( )� -1

are solutions to the following minimization problem:

The estimating equations in (1) yield primal solutions in a modification of the Barrodale

and Roberts (1974) simplex linear program for any specified value of  (Koenker and

d'Orey 1987).  With little additional computation the entire regression quantile process

for all distinct values of  can be estimated (Koenker and d'Orey 1987, 1994).

Consistent estimates with reduced sampling variation for heteroscedastic linear

models can be obtained by implementing weighted versions of the regression quantile

estimators, where weights are based on the sparsity function at a given quantile and

covariate value (Koenker and Portnoy 1996, Koenker and Machado 1999).  In the linear

location-scale model this simplified to using an n × n weights matrix, W = , where-1

the p × 1 vector of scale parameters  would usually have to be estimated in

applications (Gutenbrunner and Jure�ková 1992, Koenker and Zhao 1994, Koenker and

Machado 1999).  The weighted regression quantile estimates then are given by



min[�
n
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�
�
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where �
�
(e)�e(�� I(e<0)),

wi is a weight,
and I(·) is the indicator function.

max{y �a|X �a � (1��)X �1, a � [0,1]n}
where 1 denotesan n�vector of 1's
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 (3)

which is easily implemented by multiplying y and X by W and then using the

unweighted estimator (1).

3. Rankscore Test Statistics

The primal linear programming solution for (1) has as its corresponding dual solution 

that serves as the basis for constructing rankscore tests using the regression quantile

estimates (Gutenbrunner et al. 1993, Koenker and d’Orey 1994, Koenker 1994, 1997).

The �-quantile rankscore test uses the �-quantile score function, � (t) = � - I(t < �), on�

the n × 1 vector of dual linear programming solutions, a(�) = [0,1] , associated withn

estimating the reduced parameter model corresponding to constraints imposed by the

null hypothesis on the full parameter model.  The reduced parameter model,

y - X (�) = X (�) + , is constructed by partitioning X = (X , X ), where X  is2 1 1 1 2 1

n × (p - q) and X  is n × q; and by partitioning  = ( , ), where (�) is a (p - q) × 12 1 2 1

vector of unknown nuisance parameters under the null and (�) is a q × 1 vector of2

parameters specified by the null hypothesis H : (�) = (�) (frequently (�) = 0) for the0 2

full parameter model y = X (�) + X (�) + ; and y, , and  are as above. The n ×11 1 2 2

vector of rankscores r(�) = a(�) - (1 - �)1, where 1 denotes an n × 1 vector of 1's, is
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regressed on the design matrix and the test statistic

    T = S(�)�Q S(�)/(�(1 - �)),                                                   (4)-1

where Q = n X �(I - X (X �X ) X �)X  and S(�) = n (X  - X (X �X ) X �X )�r(�), is-1 -1 -0.5 -1
2 1 1 1 1 2 2 1 1 1 1 2

asymptotically distributed under H : as �  with q degrees of freedom.  The elements of0
2

a(�) are 1 when the residuals for the reduced model are positive, 0 when the residuals

are negative, and in the interval (0,1) when the residuals are 0, i.e., observations fit

exactly by the �  regression quantile estimate.  Rankscores r(�) then are � for positiveth

residuals, � - 1 for negative residuals, and in the interval (� - 1, �) when residuals are 0. 

The rankscores, r(�), correspond to the quantile weights used in estimating the reduced

parameter null model in (1).  Validity of the rankscore test assumes a positive density

for y at the estimate, f(F (�)) >0. -1

If X  = x  and (�) is a scalar, i.e., a single predictor is being tested, then the2 2 2

quantile rankscore statistic simplifies and under the null hypothesis this 1 degree of

freedom test is referenced to a standard normal distribution (Koenker 1994, 1997).  This

construction allows confidence intervals to be easily estimated by inversion with a

modification of the linear program used to estimate regression quantiles (Koenker

1994).  Because the sampling distribution of the rankscore test statistic is discontinuous,

Koenker (1994) recommended interpolating between adjacent hypothesized values of

(�) = �(�) for constructing confidence intervals when inverting quantile rankscore2

tests.  Confidence intervals estimated by inverting the quantile rankscore test may be

asymmetric.
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The �-quantile rankscore test is based on a nondecreasing, square integrable

scoring function with mean µ(�) = 0 and variance � (�) =  �(1-  �) and, thus, is similar2

in form to the aligned rank transform statistic considered by Mansouri (1999).  Note

that S(�)�Q S(�) in (4) is the sum of squares of regression for X , SSReg(�) = SSE(�)-1
2  red

- SSE(�) , where SSE(�)  = r(�)�(I - X (X �X ) X �)r(�) and SSE(�)  = full red full1 1 1 1
-1

r(�)�(I - X(X�X) X�)r(�).  Mansouri (1999) proved that a test statistic form like (4) was-1

just the limiting (n � �) form of an F statistic, 

               F  = (SSE(�)  - SSE(�) )/(qMSE(�)),                                 (5) q, n - p  red full

where MSE(�) = SSE(�) /(n - p) � � (�), and established via simulation that (5) hadfull
2

better small sample Type I error rates than (4).  Because the sampling distribution of the

�-quantile rankscore test is discontinous and increases in discontinuity as � approaches 0

or 1, I expected that there might be some small sample performance advantages to using

(5) over (4) for hypothesis tests or constructing confidence intervals by inverting the

quantile rankscore test.

The F statistic for the quantile rankscore test (5) is based on a regression with a

dependent variable, r(�), that is a function of residuals under the reduced parameter null

model.  This test statistic is amenable to evaluation by permutation arguments that have

been developed for testing subhypotheses in least squares regression (Kennedy and

Cade 1996, Anderson and Legendre 1999, Anderson and Robinson 2001).  The

permutation distribution computed for (5) might yield more reliable Type I error rates at

smaller sample sizes and more extreme quantiles than the F distribution approximation

with q and n - p degrees of freedom. The quantile rankscore F test evaluated by
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permutation arguments is defined by the slightly simpler form for the observed value of

the statistic

                F  = (SSE(�)  - SSE(�) )/(SSE(�) ),                                   (6)o  red full full

where SSE(�)  and SSE(�)  are as above, because the degrees of freedom in (5) arered full

unnecessary as they are invariant under permutation.  Note that F  × SSE(�) /(�(1 - �))o full

= T and F  × ((n - p)/q) =  F .  The permutation test statistic, F , has a simpleo q, n - p o  

interpretation as a proportionate reduction in sums of squares when passing from

reduced to full parameter models for a specified quantile.  

Following Kennedy and Cade (1996), Anderson and Legendre (1999), and

Anderson and Robinson (2001), the observed value of the rankscore test statistic, F , iso

evaluated under the null hypothesis by permuting the �-quantile rankscores, r(�), among

the rows of the design matrix (X) with equal probability, (n!) .  A large random sample-1

of size m is used to approximate the n! possible permutations.  Probability under the

null hypothesis that F � F  is approximated by (the number of F � F  + 1)/(m + 1).  Io o

used a minimum of  m + 1 = 10,000 to achieve probability approximations with

minimal variation due to the Monte Carlo resampling.

Although permuting residuals (e = y - X b ) under the null reduced parameter1 1

model does not in general yield exact permutation probabilities except when the null

parameter is just an intercept (
�

), this permutation approach due to Freedman and Lane0

(1983) was found to have perfect correlation asymptotically with the exact test (only

possible when  is known) (Anderson and Robinson 2001) and has performed well in1

simulation studies (Cade and Richards 1996, Kennedy and Cade 1996, Anderson and
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Legendre 1999, Legendre 2000).  There is some correlation (-(n - 1) ) among the-1

residuals and they don’t have constant variance (E[e e�] = � (I - X (X �X ) X �)),2 -1
1 1 1 1

implying that they are not exactly exchangeable.   Dependency among the residuals

decreases with increasing sample size providing some asymptotic justification for

treating them as exchangeable random variables (Randles 1984).  Commenges (In

Press) established that transformations to preserve exchangeability of the first two

moments of the residuals must reduce the rank of the n × 1 vector of residuals to an

(n - p + q) × 1 vector of uncorrelated residuals, e.g., the best linear unbiased residuals

with scalar covariance of Theil (1965).  This approach was not pursued here.  However,

the �-quantile rankscore transformation of residuals to [� - 1, �] under the null model

should approach constant variance more rapidly than raw residuals.  There are at most

n - p + q residuals with rankscores of � or � - 1, and at least p - q rankscores in the

interval (� - 1, �).  Together these conditions should reduce dependency among the

transformed residuals and improve exchangeability under the null model.

An obvious modification of the quantile rankscore tests T and F is to

incorporate a weights matrix, W, in estimating the reduced parameter null model and in

constructing the test statistics (4), (5) and (6).  The disadvantage of this approach is that

in applications the weights are unknown and must be estimated.  Part of the motivation

for the quantile rankscore test was a belief that converting to scores in the interval 

[� - 1, �] would eliminate the need to formally model error heterogeneity (Koenker

1994).  Koenker and Machado (1999) proposed a weighted version of the quantile

rankscore test, where weights were a function only of predictors in the null model (X ),1
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whereas I considered weights as a function of predictors in the full model (X).

4. Simulation Experiment

Although my primary interest was in performance of the test statistics for regression

quantile models estimated with heterogeneous responses, I first conducted a set of

Monte Carlo simulations with homogeneous errors to establish performance for models

with simpler error structure.  Normal (µ = 0, � = 1), uniform (min = -2, max = 2), and

lognormal (median = 0, � = 0.75) error distributions were used to provide responses

with symmetric, unimodal variation with greatest density at the center, symmetric

variation with constant density, and asymmetric variation with density in a long upper

tail.  A limited set of simulations with Poisson error distributions was made to evaluate

the quantile rankscore test when there were many tied integer values as would occur

with counts of organisms, violating the assumption of positive density at the estimates.  

Error distributions were centered on their 0.50, 0.75, 0.90, 0.95, or 0.99 quantiles so

that F (��X) = 0, providing a range of central to extreme regression quantiles.  Note�
-1 

that similar simulation results for quantiles in the lower tail (0.25, 0.10, 0.05, and 0.01)

would be obtained for the symmetric error distributions.

Simple 2 parameter and 6 parameter multiple regression models were simulated

for n = 20, 30, 60, 90, 150, and 300.  Independent variables were structured to have a

range of values and correlation structure similar to what might be expected in measures

of forest habitat structure for avian species.  Independent variables were structured so

that X was a column of 1's for the intercept; X  was uniformly distributed (0, 100); X0 1 2

was negatively correlated (r = -0.89) with X  specified by the function X  = 4,000 1 2
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-20X  + N(µ = 0, � = 300); X  was positively correlated (r = 0.94) with X  specified by1 3 1

the function X  = 10 + 0.4X  + N(µ = 0, � =16); X  was a 0,1 indicator variable3 1 4

randomly assigning half the sample to each of 2 groups; and X  was the multiplicative5

interaction of X and X .  Thus, X  ranged from 0 - 100 similar to measures of percent3 4 1

tree canopy cover, X  had most values in the range 0 - 5,000 and was inversely related2

to tree cover similar to density (stems/ha) of a shade intolerant shrub, and X  had most3

values in the range 0 - 60 similar to tree height (m) and was positively related to tree

cover.  Variables X and X  were negatively correlated (r = -0.85) with each other2 3

through their indirect functional relation with X .  The indicator variable (X ) and its1 4

interaction with X  (X ) allowed the effect of X  for the regression quantile function to3 5 3

differ in slopes, intercepts, or both terms for the 2 groups.

 Each combination of conditions (quantile, error distribution, sample size, and

model structure) was sampled 1,000 times, and the test statistics T and F  wereo

computed for each sample.  Probabilities for the permutation F test were evaluated with

separate m + 1 = 10,000 random samples of the permutation distribution.   Cumulative

distribution function (cdf) plots of the Type I error probabilities under the null

hypothesis were graphed and compared with the expected uniform cdf.  However, point

estimates for � = 0.05 and 0.10, corresponding to coverage for 95% and 90%

confidence intervals, were graphed across the combination of model conditions because

the number of graphs required to display the cdf plots was excessive.  The 99%

binomial confidence interval for 1,000 simulations for � = 0.10 is 0.076 - 0.124 and for

� = 0.05 is 0.032 - 0.068, which can be used as a guide to judge how much the
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estimated error rates exceeded variation expected from the sampling simulations.   

Power under the alternative hypotheses was graphed only for � = 0.05 across all

combinations of conditions, although cdf  plots were initially examined. 

All data for the simulation studies were generated with functions in S-Plus 2000

(Mathsoft, Inc., Seattle, WA).  Regression quantile estimates and test statistics were

computed by a static memory compilation of Fortran 95 routines implemented in the

Blossom software available from the U. S. Geological Survey

(www.mesc.usgs.gov/products/software/ blossom.shtml).  Regression quantile estimates

and T rankscore tests from the software used in simulations were compared with

estimates from the S-Plus scripts developed by R. Koenker

(www.econ.uiuc.edu~roger/research/home.html) for selected models both before and

after simulations were completed and found to agree to at least 7 decimal places. 

4.1 Homogeneous Error Structure - Simple Regression

The simple 2 parameter regression model, y = �  + � X  + �  was evaluated for0 1 1

H : �  = 0 with �  fixed at 6.0 and �  = 0.0, 0.01, 0.05, 0.10, and 0.20.  Estimated Type I0 1 0 1

error rates (�  = 0.0) for the permutation F test maintained nominal rates across all1

conditions whereas the T test became excessively conservative for the 0.95 quantile for

n � 30 and for the 0.99 quantile for n � 150 (Fig. 2.1).  Results for the permutation test

were consistent with exact exchangeability for this hypothesis. Type I errors for the 0.75

quantile were nearly identical to those for the 0.50 quantile and, therefore, were not

graphed for this or subsequent simulations.  Results were similar for all error

distributions for most conditions so only results of the lognormal error distribution are 



Figure 2.1.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests; for homogeneous lognormal error distributions; for H0: β0 = 0 and H0: β1 = 0
in the model y = β0 + β1X1 + ε, and H0: β3 = 0 in the model y = β0 + β1X1 + β2X2 + 
β3X3 + β4X4 + β5X5 + ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for n = 20, 30, 
60, 90, 150, and 300.   1,000 random samples were used at each combination of
H0:, n, and quantile.
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given in the Figures for this and subsequent simulations.  Results for normal and

uniform error distributions are in Appendix 2.

It was possible to convert F  to the F  rankscore statistic and evaluateo q, n - p

probabilities with an F distribution with q and n - p degrees of freedom.  The F

distribution approximation controlled Type I errors under the same conditions where

the Chi-square approximation of the T  test statistic was well behaved and provided

some improvement for smaller samples and more extreme quantiles.  However, the F

distribution did not maintain Type I errors as well as the permutation approximation at

small n and more extreme quantiles.  An example for the 0.99 quantile and lognormal

error distribution demonstrates that the permutation F test had less discontinuous

probabilities that were more uniformly distributed than those for the distributional

approximations of T and F  (Fig. 2.2).q, n - p

The simple 2 parameter regression model also was evaluated for H : �  = 0 with0 0

�  fixed at 0.10 and �  = 0.0, 0.5, 1.0, 2.0, and 3.0.  Type I error rates for the intercept1 0

under then null hypothesis (�  = 0.0) were better maintained by the T test than the F0

test, which was always slightly liberal although not excessively so until 0.95 and 0.99

quantiles and n < 150 (Fig. 2.1).  The T test was slightly conservative for the 0.95

quantile for n < 90 and for the 0.99 quantile for n < 300.

Detailed exploration of the simulation results for the permutation F test

indicated that there was additional sampling variation not accounted for by the

permutation distribution of the test statistic when the null model was constrained 

through the origin.  If the number of positive, negative, and zero residuals are denoted 
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by N , N , N , respectively, and if N  = p - q under the null model, then there are at +  -  0  0

most n� negative residuals (N  � n� � N  + N ) and at most n(1 - �) positive residuals -  -  0

(N � n[1 - �]� N + N ) when the null model includes an intercept (Koenker and +  +  0

Bassett 1978, Koenker and Portnoy 1996).  When the null model does not include an

intercept, the limits on the number of positive (negative) residuals exceeded these

values by amounts consistent with binomial random variation with success probability 1

- � (or � for negative residuals).  Consequently, I modified a recently proposed double

permutation scheme for least squares regression through the origin (Legendre and

Desdevises In Press) for the quantile rankscore test as a possible remedy.  The values of

the rankscores, r(�), rather than being fixed across all permutations to X were varied

such that the number of r(�) with value � for positive residuals (and conversely values

of � - 1 for negative residuals) was a binomial random variable with parameter 1- �. 

The double permutation F test for the intercept had improved Type I error rates that

were similar to the T test when n was not too small and � < 0.99 but became excessively

conservative when � = 0.99 and n < 300 (Fig. 2.3).

   Power for nonzero slopes (�  = 0.01, 0.05, 0.10, 0.20) was similar for the  F and1

T tests with a small improvement for the F test (relative power = 0.98 - 1.35) at 0.90

and 0.95 quantiles at smaller n (Fig.2.4).  The F test provided effective power down to

n = 30 for 0.95 and n = 150 for 0.99 quantiles, whereas the T test only provided

effective power down to n = 60 and n = 300, respectively, because of very conservative

Type I error rates at smaller sample sizes (Fig. 2.4).  The drop in power when moving 
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from 0.50 to 0.99 quantiles was greatest for the lognormal (Fig.2.4) and normal error

distributions (Appendix 2.3) and least for the uniform error distribution (Appendix 2.4),

which had a slight increase in power with increasing quantiles up to 0.95 for n � 60.

Power for nonzero intercepts (�  = 0.5, 1.0, 2.0, and 3.0) was slightly greater for the T0

compared to the F test (Fig. 2.4).  Similar results were obtained for the normal and

uniform error distribution (Appendices 2.3 and 2.4).  Power was not estimated for the

double permutation F test but should be similar to the T test.

4.2 Homogeneous Error Structure - Multiple Regression

The 6 parameter model, y = �  + � X  + � X  + � X  + � X  + � X  + � , was0 1 1 2 2 3 3 4 4 5 5

evaluated for H : �  = 0 with �  = 36.0, �  = 0.10, �  = -0.005, �  = 2.0, and �  = �  =0 3 0 1 2 4 3 5

0.0. The permutation F test maintained better Type I error rates for smaller n for the

0.95 and 0.99 quantiles than the T test (Fig. 2.1).  The 6 parameter model also was

evaluated for H : �  = 0 with �  = 36.0, �  = 0.10, �  = -0.005, �  = 0.05, and �  = �  =0 4 0 1 2 3 4 5

0.0.  Type I error rates were similar to those for H : �  = 0.  Power was not investigated0 3

for multiple regression models with homogeneous errors.

4.3 Heterogeneous Error Structure - Simple Regression

The 2 parameter regression model with heterogeneous errors, y = �  + � X  + (1 +� X )� ,0 1 1 1

was evaluated with �  = 0.025, 0.05, and 0.10 for H : �  = 0 with �  = 6.0 and �  = 0.0 to0 1 0 1

evaluate the effects of increasing heterogeneity on Type I error rates for the rankscore

tests.  Type I error rates were increasingly liberal for the permutation F and T tests (Fig.

2.5) with increasing heterogeneity, except that the T test became excessively

conservative at n < 60 for the 0.95 and at n < 150 for the 0.99 quantile.  Results were 
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similar for normal and uniform error distributions (Appendices 2.5 and 2.6).  Again,

converting F  to an F  rankscore statistic and evaluating probabilities with the Fo q, n - p

distribution and q and n - p degrees of freedom provided minor improvements in small

sample Type I errors compared to the T test, similar to simulations with homogeneous

errors.  The F distributional approximation did not maintain Type I error levels as well

as the permutation approximation for the F test with small n and extreme quantiles.

Type I error rates when �  = 0.10, which corresponds to a 10-fold increase in � across the

domain of X  since X  ranges 0 - 100, were such that nominal 95% confidence intervals1 1

would have actual coverage of only 90%. 

Weighted versions of the regression quantile estimates and the rankscore tests

for � = 0.05 were simulated using the known weights, w = (1 + 0.05X ) , in (2).  Type I 1
-1

error rates were improved for the weighted versions of both tests (Fig. 2.6B) compared

to those for the unweighted tests (Fig. 2.5), except for the 0.99 quantile and smaller n. 

The permutation F test was always slightly more liberal than the T test because the

weighted estimate for the null model is forced through the origin.  Here, again the

double permutation F test provided improved Type I errors over the permutation F test

except at the 0.99 quantile and n < 300 (Fig. 2.6A), where none of the weighted

statistics worked well.

The H : �  = 0 also was evaluated in the 2 parameter regression model with0 0

heterogeneous errors, y = �  + � X  + (1 +� X )� , with �  = 0.05, �  = 0.10, and �  = 0.0,0 1 1 1 1 0

0.5, 1.0, 2.0, and 3.0.  The T test maintained Type I error rates (�  = 0.0) slightly better0

than the permutation F test similar to simulations for homogenous errors, with error 
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permutation F (circles) and Chi-square distributed T (triangles) rankscore tests for 
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rates of the latter test becoming extremely liberal for the 0.95 and 0.99 quantile and n <

90.  Type I error rates for testing the intercept (H : �  = 0) with unweighted statistics0 0

deviated less from nominal rates compared to testing the slope (H : �  = 0) under0 1

similar heterogeneous error structures, providing reasonable Type I error rates for

n� 90.  The double permutation F test was not evaluated for this set of conditions but

would be expected to provide similar improvements over the permutation F test as it

did when error distributions were homogeneous.

Power for �  = 0.01, 0.05, 0.10, and 0.20 was simulated for � = 0.05 for the1  

unweighted rankscore tests because part of the motivation for using the rankscore tests

was to avoid having to model error heterogeneity in applications.  Clearly, slightly

liberal Type I error rates for �  = 0.05 will inflate power estimates for the unweighted 

rankscore tests.  Power for the unweighted F and T tests was similar, except for smaller

n for 0.95 and 0.99 quantiles, where their Type I error rates had become excessively

liberal or conservative, respectively (Fig. 2.7). Similar results were obtained for the

normal and uniform error distributions (Appendices 2.7 and 2.8).  Power for �  = 0.5,0

1.0, 2.0, and 3.0 was slightly greater for the T compared to the F test (Fig. 2.7,

Appendices 2.7 and 2.8), similar to homogeneous error distribution models.

4.4 Heterogenous Error Structure - Multiple Regression

The 6 parameter model, y = �  + � X  + � X  + � X  + � X  + � X  + (1 +� X )� , with0 1 1 2 2 3 3 4 4 5 5 1

�  = 0.05 was evaluated for the full model hypothesis H : �  =  �  = �  = �  = �  = 0 for �0 1 2 3 4 5 0

fixed at 36.0 and �  = �  = �  = �  = �  = 0 for Type I error rates, and with �  = 0.10,1 2 3 4 5 3

0.15, 0.20, 0.25 for power.  Type I error rates were well maintained by both tests until
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Figure 2.7.  Estimated power for α = 0.05 for the permutation F (solid) and
Chi-square distributed T (open) rankscore tests; for heterogeneous lognormal error
distributions; for H0: β0 = 0 and H0: β1 = 0 in the model y = β0 + β1X1 + (1 + 0.05X1)ε;
for β0 = 0.0, 0.5, 1.0, 2.0, and 3.0 and for β1 = 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; and for n = 20 (circle), 30 (triangle), 60 (square),
90 (diamond), 150 (pentagon), and 300 (star).  Open symbols often are hidden
behind solid symbols when equal.  1,000 random samples were used at each
combination of effect size, n, and quantile.
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n � 30 for the 0.95 quantile and n � 150 for the 0.99 quantile, where the F test became

liberal and the T test became conservative (Fig. 2.8, Appendices 2.9 and 2.10).  Power

estimated with 1 of the 5 slope parameters (� ) allowed to be nonzero was similar for3

the rankscore tests (Fig. 2.10).  Power was low for the 0.95 quantile to nonexistent for

the 0.99 quantile.  Power for this and other conditions evaluated for the multiple

regression models was only evaluated for the lognormal error distribution to reduce the

amount of computing and reporting.

Type I error rates for subhypotheses involving continuous variables in the 6

parameter model with �  = 0.05 were evaluated for H : �  = 0 and H : �  = �  = 0 with �0 3 0 3 5 0

= 36.0, �  = 0.10, �  = -0.005, �  = 2.0, and �  = �  = 0.0.  The permutation F test1 2 4 3 5

maintained Type I errors well across all sample sizes and quantiles for H : �  = 0,0 3

whereas the T test became excessively conservative for smaller n for 0.95 and 0.99

quantiles (Fig. 2.8).  Type I error rates were slightly more liberal for the H : �  = �  = 00 3 5

(Fig. 2.9) compared to the H : �  = 0 (Fig. 2.8) for lognormal as well as normal and0 3

uniform error distributions (Appendices 2.9 - 2.12).  Again, the permutation F test

maintained Type I error rates better for smaller n and 0.95 and 0.99 quantiles compared

to the T test, which became excessively conservative.  Power for H : �  = 0 was0 3

estimated with �  = 0.10, 0.15, 0.20, and 0.25 for the lognormal error distribution. 3

Power was similar for the tests and became exceedingly low to nonexistent for 0.90 -

0.99 quantiles (Fig. 2.10).

Subhypotheses involving categorical predictors in the 6 parameter model were

evaluated for H : �  = 0 and H : �  = �  = 0 with � = 36.0, �  = 0.10, �  = -0.005,0 4 0 4 5 0 1 2
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Figure 2.8.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests for H0: β1 = β2 = β3 = β4 = β5 = 0, H0: β3 = 0, and H0: β4 = 0; for heterogeneous
lognormal error distributions with γ = 0.05 in the model y = β0 + β1X1 + β2X2 + β3X3

+ β4X4 + β5X5  + (1 + γX1)ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for
n = 20, 30, 60, 90, 150, and 300.   1,000 random samples were used at each
combination of H0, n, and quantile.
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for n = 20, 30, 60, 90, 150, and 300.   1,000 random samples were used at each
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Figure 2.10.  Estimated power for α = 0.05 for the permutation F (solid) and Chi-square
distributed T (open) rankscore tests for H0: β1 = β2 = β3 = β4 = β5 = 0, H0: β3 = 0, and
H0: β4 = 0; for heterogeneous lognormal error distributions with γ = 0.05 in the model
y = β0 + β1X1 + β2X2 + β3X3+ β4X4 + β5X5  + (1 + γX1)ε; for 0.50, 0.90, 0.95, and 0.99
quantiles; and for n = 20 (circle), 30 (triangle), 60 (square), 90 (diamond),150
(pentagon), and 300 (star). Open symbols often are hidden behind solid symbols when
equal.  1,000 random samples were used at each combination of H0, n, and quantile.  
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�  = 0.05, and �  = �  = 0.0.  The T test became excessively conservative for n � 90 for3 4 5

the 0.95 quantile and for n � 150 for the 0.99 quantile compared to the permutation F

test (Figs. 2.8 and 2.9).   Type I error rates for H : �  = 0 (Fig. 2.8) were slightly more0 4

liberal than for H : �  = �  = 0 (Fig. 2.9) for both tests for lognormal as well as normal0 4 5

and uniform error distributions (Appendices 2.9 - 2.12).  Power was evaluated for the

subhypothesis H : �  = 0 for �  = 1.5, 3.0, 6.0, and 12.0 and the lognormal error0 4 4

distribution.  Estimates of power were similar for the tests with a slight advantage for

the permutation F  test for smaller n and the 0.95 and 0.99 quantiles (Fig.2.10).

The H : �  = 0 also was evaluated for a variant of this 6 parameter model where0 4

� = 3.0, �  = 0.10, �  = -0.0005, �  = 0.05, and �  = �  = 0.0 and y having a Poisson0 1 2 3 4 5

distribution with mean and variance specified by the regression function.  As elsewhere,

the permutation F test maintained better error rates for small n for the 0.95 and 0.99

quantiles than the T test (Fig. 2.9).  For this model, there was no evidence that the tied

integer values associated with the Poisson distribution caused any unusual problems

with the rankscore tests.

The F distribution approximation of the F  rankscore statistic maintainedq, n - p

Type I error rates well under similar sample sizes and quantiles where the Chi-square

distributional approximation of the T rankscore statistic worked well when testing

subhypotheses in multiple regression models.  However, probabilities for the Fq, n - p

statistic and those provided by the permutation approximation of the F  statistic wereo

closer to nominal error rates for small n and more extreme quantiles than those for the

Chi-square distributional approximation of the T statistic.  An example for H : �  = �  =0 4 5
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0 for the lognormal error distribution and the 0.95 quantile is in Figure 2.11.

5. Example Application

I constructed confidence intervals for regression quantile estimates of Lahontan

cutthroat trout Oncorhynchus clarki henshawi density (trout m ) as a function of stream-1

channel morphology (width:depth ratio) for 13 small streams in Nevada sampled over 7

years (Dunham et al. 2002).  Width:depth ratio is a measure that integrates stream

channel characteristics thought to be related to small stream integrity and, thus, fish

populations and is easily measured for assessing fish habitat conditions and land use

impacts over large regions.  Lahontan cutthroat trout are a threatened species of special

interest to federal land management agencies.

Here I considered the nonlinear model y = exp(�  + � X  + � ), where y is trout0 1 1

m  and X  is width:depth ratio, for n = 71 observations of streams for 1993 to 1999-1
1

(Dunham et al. 2002).  The model was estimated in the linear form ln y = �  + � X  + �
0 1 1

and estimates for selected regression quantiles were plotted by exponentiating to back

transform to the nonlinear form (Fig. 2.12).  Estimates for all quantiles were plotted as a

step function with 90% confidence intervals for 19 quantiles between 0.05 and 0.95 by

increments of 0.05 (Fig. 2.13).  Interval endpoints were estimated from a linear

interpolation between hypothesized parameter values that had T test statistics that

bracketed the standard normal test statistic = 1.645 associated with � = 0.10 (Koenker

1994) as was done by Dunham et al. (2002).  Here I also provide confidence intervals 

for estimates of �  that were not provided by Dunham et al. (2002).0



Figure 2.11.  Cumulative distributions of 1,000 estimated errors for permutation
approximation of the F (solid line), Fq, n - p distribution approximation of (square dot)
the F, and Chi-square distribution approximation of T (dashes) rankscore tests
for H0: β4 = β5 = 0 for the 0.95 quantile, for n = 30 and 90, for the lognormal error
distribution in the model y = β0 + β1X1 + β2X2 + β3X3+ β4X4 + β5X5 + (1 + γX1)ε.
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Confidence intervals also were constructed based on inverting the permutation F 

test for the same quantiles (Fig. 2.13).  The possible boundary values for the estimated

confidence interval endpoints were obtained from the linear programming

implementation used to construct intervals by inverting the T test statistic (Koenker

1994).  These values were then used as hypothesized parameter values of �(�) in the

transformation y - X �(�) to test the H : (�) = �(�) with (6), where  was either �  or2 2 20 0

�  depending on the parameter being tested.  We used m + 1 = 100,000 permutations to1

compute probabilities for the F tests associated with confidence interval endpoints. 

Similar to the T test inversion approach, the F test inversion approach had confidence

interval endpoints that were discontinuous in probabilities.  I used a linear interpolation

based on the P-values to estimate the endpoints rather than the more conservative

approach of using the closest estimated confidence interval endpoint with P � �.  This

had a similar effect to the linear interpolation for the T test.  For example, the

hypothesized parameter values that bracketed the lower 90% confidence interval

endpoint for the 0.90 quantile for �  were �(0.90) = -0.03374 with P = 0.0396 and1

�(0.90) = -0.03346 with P = 0.2980.  No value between these parameter values yielded

different rankscore test statistics. The linear interpolated interval was computed as

-0.03374 + |-0.03346 - -0.03374| × ((0.1000 - 0.0396)/(0.2980 - 0.0396)) = -0.03367. 

The T test inversion approach has standard normal test statistics of 2.047 and 1.241

associated with �(0.90) = -0.03374 and �(0.90) = -0.03346, respectively.  Linear

interpolation was used to obtain the estimated endpoint (-0.03361) for the standard 

normal test statistic = 1.645 associated with � = 0.10 (Koenker 1994). There was little 
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Figure 2.12. Lahontan cutthroat trout m-1 and width:depth ratios for 13 small
streams sampled 1993-1999 (n = 71); exponentiated estimates for  0.90, 0.50,
and 0.10 regression quantiles (solid lines) for the model lny = β0 + β1X1+ ε; and
exponentiated weighted least squares (WLS) estimate of mean and 0.90 percentile
(WLS 0.9) estimate for the model lnyw= (β0+ β1X1 + (γ0  - γ1X1)ε)w,
w = (1.310 - 0.017X1)
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simultaneous (b) 1-sided upper 90% confidence intervals for 0.90 regression quantile
for selected width:depth ratios between 5 and 55.  Upper dotted line (c) is
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Figure 2.13.  Solid lines are step functions for estimates of β0 and β1 by 
quantiles [0, 1] in the unweighted model lny = β0 + β1X1 + ε and in the 
weighted model (lny)w = (β0 + β1X1 + (γ0  - γ1X1)ε)w, w = (1.310 - 0.017X1)

-1,
for n =71 observations of Lahontan cutthroat trout m-1 and width:depth ratios.
Pointwise 90% confidence intervals based on inverting the T rankscore test
(triangles) and inverting the permutation F rankscore test (cirlcles) were
constructed with linear interpolation between estimated endpoints. 
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Figure 2.13.  Solid lines are step functions for estimates of β0 and β1 by 
quantiles [0, 1] in the unweighted model lny = β0 + β1X1 + ε and in the 
weighted model (lny)w = (β0 + β1X1 + (γ0  - γ1X1)ε)w, w = (1.310 - 0.017X1)

-1,
for n =71 observations of Lahontan cutthroat trout m-1 and width:depth ratios.
Pointwise 90% confidence intervals based on inverting the T rankscore test
(triangles) and inverting the permutation F rankscore test (cirlcles) were
constructed with linear interpolation between estimated endpoints. 
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difference in the estimated 90% confidence intervals across � = [0.05, 0.95] for the

permutation F and T test inversion approaches, with slightly narrower intervals for the

permutation F inversion approach for some quantiles (Fig. 2.13).  Pushing interval

estimation for �  to a slightly more extreme quantile, � = 0.98, the permutation F test1

based interval (-0.0313, -0.0299) was a third of the length of the T test based interval

(-0.0324, -0.0293), although both intervals were very short and perhaps stretched the

bounds of reliability.

Weighted regression quantile estimates and associated intervals based on test

inversion were constructed by using the unweighted estimates (Fig. 2.13) as a basis for

developing a weighting function.  The decrease in estimates of �  mirrors the increase in1

estimates of �  with increasing �, suggesting a linear location-scale model with error0

variation of the form � - � X  as a reasonable approximation.  The weight function was0  1 1

estimated by the average pairwise difference between the 76 regression quantile

estimates for b (� ) to estimate �  and for b (� ) to estimate � .  Multiresponse0 0 1 1

permutation procedure routines were used for computing the average pairwise

differences (Mielke and Berry 2001).  The estimated standard deviation function was

1.310 - 0.017X , and its reciprocal provided weights for the weighted regression1

quantile estimate (2), which was implemented by multiplying all variables in the model

by the weights and then using the regression quantile estimator (1).  The F and T tests

produced linear interpolated 90% confidence intervals that differed most for weighted

estimates of �  for the lower quantiles (Fig. 2.13).  The overall pattern and width of0
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intervals for the weighted estimates were not greatly different from their unweighted

counterparts, which is consistent with the rather weak (<1 standard deviation change)

pattern of heterogeneity across width:depth ratios.  Both weighted and unweighted

confidence bands supported an interpretation that increasing stream width:depth ratios

from 15 to 45 decreased the highest 20% of trout densities (� � 0.80) by 11 to 64%

[exp(-0.004 × 30) = 0.887 and exp(-0.034 × 30) = 0.361].

A 1-sided upper 90% confidence band for the 0.90 quantile that was not

simultaneous in X  was estimated for 11 equally spaced width:depth values between 51

and 55 corresponding to the range of ratios in the sample (Fig. 2.12).  This was done by

forming confidence intervals for �  with a 2-sided � = 0.20 after shifting the0

width:depth ratios by the 11 selected values.  For example, shifting the width:depth

ratios by subtracting 20 implies that the interval constructed for �  on the transformed0

data was now an interval for width:depth ratio = 20 rather than for width:depth ratio =

0.  Obviously, more values of width:depth ratio could have been used to obtain a

smoother band.  For comparison, a 90  percentile line based on a weighted least squaresth

regression of the log transformed trout densities and corresponding nonsimultaneous 1-

sided upper 90% confidence intervals were estimated based on Vardeman (1992) and

Gerow and Bilen (1999).  Both the quantile regression and weighted least squares

intervals are interpreted as upper tolerance intervals for an individual value of

width:depth (Vardeman 1992), but the latter estimates assumed a normal distribution

for the log transformed data, resulting in slightly wider intervals (Fig. 2.12).  A lower

confidence interval (e.g., for 0.10 quantile) was of little interest with this data as it was
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effectively 0 for all width:depth ratios.

Simultaneous intervals in X  for the 0.90 quantile regression were estimated by1

emulating computations for the Working-Hotelling procedure for simultaneous

confidence bands (Neter et al. 1996:156-157).  The simultaneous intervals were slightly

wider than the nonsimultaneous quantile rankscore intervals but were narrower than the

nonsimultaneous intervals based on the weighted least squares estimates (Fig. 2.12). 

The Working-Hotelling procedure used (2 × F(0.80, 2, 69))  = 1.815 as a multiplier for0.5

the standard error of  a predicted y at a specified X, implying that any individual interval

required an � = 0.0738 for a simultaneous 2-tailed � = 0.20.  The simultaneous

confidence band in Figure 2.12 is interpreted as an upper 90% tolerance band for 90%

of future observations of trout densities.  In repeated random sampling we would expect

90% of samples to have 90% of trout densities within the interval estimates for all

width:depth ratios.  Although I used the T rankscore test inversion approach for

constructing the confidence bands on the 0.90 quantile, this procedure also could have

been done with the permutation F test inversion procedure.  A simultaneous confidence

band also could be constructed based on the weighted least squares estimates (Turner

and Bowden 1977, Gerow and Bilen 1999) but would be even wider than the

nonsimultaneous band.

 6. Discussion

The permutation F rankscore test maintained Type I errors better and had more power

than the Chi-square T rankscore test for model combinations of small samples, more

extreme quantiles, and more parameters.  The permutation test maintained Type I errors
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better at 20 �  n � 30 for 0.95 and 20 �  n � 90 for 0.99 quantiles for 2 parameter

models and at 30 �  n � 90 for 0.95 and 150 �  n < 300 for 0.99 quantiles for 6

parameter models, depending on the number of parameters being tested.   This was true

regardless of the error distribution.  My example application with the Lahontan

cutthroat trout data suggested that these differences may not always be of sufficient

magnitude to affect the interpretation of an analysis when quantiles used are not too

extreme (e.g., 0.05 � � � 0.95).  When estimating models for more extreme quantiles

(e.g., � = 0.99), fairly large samples (n > 300) will be required for models with more

than just a few parameters to ensure reliable confidence intervals by either test.   Power

to detect the alternative hypothesis was low for more extreme quantiles (0.95 and 0.99)

in the low density tails of the lognormal and normal error distributions.  This results in

wider estimated confidence intervals based on test inversion.  This was especially

problematic for testing subhypotheses in models with more parameters.  The F

distribution approximation of the F  form of the rankscore statistic offered someq, n - p

advantages over the Chi-square distribution approximation of the T rankscore statistic

at small n and more extreme quantiles when testing subhypotheses in multiple

regression models.  But there was greater improvement by going to the permutation

approximation of the F rankscore statistic, at least for parameters other than the

intercept.

The double permutation scheme (Legendre and Desdevises In Press) provided

better Type I errors for the F test when null models were forced through the origin as

when testing the intercept.  However, additional refinements of the double permutation
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scheme need to be investigated to see whether this approach can be made to work as

well for more extreme quantiles (e.g., 0.99) and small samples.  This will be especially

important in applications of permutation tests with weighted models.

The rankscore tests were not immune to the effects of heterogeneity, although

this was a more serious performance issue for the simple 2 parameter regression models

than for the 6 parameter multiple regression models.  Some adjustment for error

heterogeneity will often be desirable for the regression quantile rankscore tests and

confidence intervals.  My simulation results suggested that when there was variation

across an independent variable >2.5 standard deviations, tests and confidence interval

estimates might benefit from using weighted estimates and rankscore tests.  I used a

simple pairwise difference approach based on the initial unweighted estimates for

estimating weights in the example application.  Other approaches for estimating

weights include regressing absolute values of residuals from an unweighted fit of the

0.5 quantile on the independent variables for linear location-scale models (Zhou and

Portnoy 1998) and the sparsity estimation approach for more general heteroscedastic

models (Koenker and Machado 1999).

One of the potential benefits of analyzing data with regression quantiles is to

focus attention on the utility of prediction and tolerance intervals in the linear model

(Vardeman 1992).  My simulations established the validity of the quantile rankscore

tests for constructing confidence intervals for � , and, therefore, by implication for other0

values of X = x.  Inverting tests on appropriate regression quantile estimates allows

construction of prediction and tolerance intervals without assuming a specific form of
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the error distribution.  Zhou and Portnoy (1998) provided alternative order statistic

based approaches to constructing such intervals with regression quantiles.  The quantile

regression based tolerance intervals estimated in my example application were slightly

narrower than comparable intervals based on weighted least squares estimates that

assumed a normal error distribution.  Parametric distributional approaches for setting

prediction and tolerance intervals should provide narrower intervals only when the

distributional assumptions are well founded.  This will not be common in most

ecological and biological applications.  Recall that the assumed parametric error

distributional form is of less consequence when estimating parameters and intervals

associated with the conditional mean than it is when trying to estimate parameters

associated with other parts of the probability distribution, as is required for constructing

prediction and tolerance intervals.        
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Appendix 2

 Simulation Results for Normal and
 Uniform Error Distributions
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Appendix 2.1.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests; for homogeneous normal error distributions; for H0: β0 = 0 and H0: β1 = 0
in the model y = β0 + β1X1 + ε, and H0: β3 = 0 in the model y = β0 + β1X1 + β2X2 + 
β3X3 + β4X4 + β5X5 + ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for n = 20, 30,
60, 90, 150, and 300.   1,000 random samples were used at each combination of
H0:, n, and quantile.
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Appendix 2.1.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests; for homogeneous normal error distributions; for H0: β0 = 0 and H0: β1 = 0
in the model y = β0 + β1X1 + ε, and H0: β3 = 0 in the model y = β0 + β1X1 + β2X2 + 
β3X3 + β4X4 + β5X5 + ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for n = 20, 30,
60, 90, 150, and 300.   1,000 random samples were used at each combination of
H0:, n, and quantile.
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Appendix 2.2.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests; for homogeneous uniform error distributions; for H0: β0 = 0 and H0: β1 = 0
in the model y = β0 + β1X1 + ε, and H0: β3 = 0 in the model y = β0 + β1X1 + β2X2 + 
β3X3 + β4X4 + β5X5 + ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for n = 20, 30,
60, 90, 150, and 300.   1,000 random samples were used at each combination of
H0:, n, and quantile.
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Appendix 2.2.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests; for homogeneous uniform error distributions; for H0: β0 = 0 and H0: β1 = 0
in the model y = β0 + β1X1 + ε, and H0: β3 = 0 in the model y = β0 + β1X1 + β2X2 + 
β3X3 + β4X4 + β5X5 + ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for n = 20, 30,
60, 90, 150, and 300.   1,000 random samples were used at each combination of
H0:, n, and quantile.

Sample Size

77



0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 1 2 3
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 1 2 3
0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.200.00 0.05 0.10 0.15 0.20

0.50

0.90

0.95

0.99

H0: β0 = 0 H0: β1 = 0

P
ow

e
r 

fo
r α

=
 0

.0
5

β0 β1

Appendix 2.3.  Estimated power for α = 0.05 for the permutation F (solid) and
Chi-square distributed T (open) rankscore tests; for homogeneous normal error
distributions; for H0: β0 = 0 and H0: β1 = 0 in the model y = β0 + β1X1 + ε; for
β0 = 0.0, 0.5, 1.0, 2.0, and 3.0 and for β1 = 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; and for n = 20 (circle), 30 (triangle), 60 (square),
90 (diamond), 150 (pentagon), and 300 (star).  Open symbols often are hidden
behind solid symbols when equal.  1,000 random samples were used at each
combination of effect size, n, and quantile.
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Appendix 2.4.  Estimated power for α = 0.05 for the permutation F (solid) and
Chi-square distributed T (open) rankscore tests; for homogeneous uniform error
distributions; for H0: β0 = 0 and H0: β1 = 0 in the model y = β0 + β1X1 + ε; for
β0 = 0.0, 0.5, 1.0, 2.0, and 3.0 and for β1 = 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; and for n = 20 (circle), 30 (triangle), 60 (square),
90 (diamond), 150 (pentagon), and 300 (star).  Open symbols often are hidden
behind solid symbols when equal.  1,000 random samples were used at each
combination of effect size, n, and quantile.
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Appendix 2.5.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests for H0: β1 = 0; for heterogeneous normal error distributions with γ = 0.025, 0.05,
and 0.10 in the model y = β0 + β1X1 + (1 + γX1)ε; for 0.50, 0.90, 0.95, and 0.99
quantiles; and for n = 20, 30, 60, 90, 150, and 300.   1,000 random samples were
used at each combination of γ, n, and quantile.
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Appendix 2.6.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests for H0: β1 = 0; for heterogeneous uniform error distributions with γ = 0.025, 0.05,
and 0.10 in the model y = β0 + β1X1 + (1 + γX1)ε; for 0.50, 0.90, 0.95, and 0.99
quantiles; and for n = 20, 30, 60, 90, 150, and 300.   1,000 random samples were
used at each combination of γ, n, and quantile.
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Appendix 2.7.  Estimated power for α = 0.05 for the permutation F (solid) and
Chi-square distributed T (open) rankscore tests; for heterogeneous normal error
distributions; for H0: β0 = 0 and H0: β1 = 0 in the model y = β0 + β1X1 + (1 + 0.05X1)ε;
for β0 = 0.0, 0.5, 1.0, 2.0, and 3.0 and for β1 = 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; and for n = 20 (circle), 30 (triangle), 60 (square),
90 (diamond), 150 (pentagon), and 300 (star).  Open symbols often are hidden
behind solid symbols when equal.  1,000 random samples were used at each
combination of effect size, n, and quantile.
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Appendix 2.8.  Estimated power for α = 0.05 for the permutation F (solid) and
Chi-square distributed T (open) rankscore tests; for heterogeneous uniform error
distributions; for H0: β0 = 0 and H0: β1 = 0 in the model y = β0 + β1X1 + (1 + 0.05X1)ε;
for β0 = 0.0, 0.5, 1.0, 2.0, and 3.0 and for β1 = 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; and for n = 20 (circle), 30 (triangle), 60 (square),
90 (diamond), 150 (pentagon), and 300 (star).  Open symbols often are hidden
behind solid symbols when equal.  1,000 random samples were used at each
combination of effect size, n, and quantile.
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Appendix 2.9.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests for H0: β1 = β2 = β3 = β4 = β5 = 0, H0: β3 = 0, and H0: β4 = 0; for heterogeneous
normal error distributions with γ = 0.05 in the model y = β0 + β1X1 + β2X2 + β3X3

+ β4X4 + β5X5  + (1 + γX1)ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for
n = 20, 30, 60, 90, 150, and 300.   1,000 random samples were used at each
combination of H0, n, and quantile.
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Appendix 2.9.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests for H0: β1 = β2 = β3 = β4 = β5 = 0, H0: β3 = 0, and H0: β4 = 0; for heterogeneous
normal error distributions with γ = 0.05 in the model y = β0 + β1X1 + β2X2 + β3X3

+ β4X4 + β5X5  + (1 + γX1)ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for
n = 20, 30, 60, 90, 150, and 300.   1,000 random samples were used at each
combination of H0, n, and quantile.
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Appendix 2.10.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests for H0: β1 = β2 = β3 = β4 = β5 = 0, H0: β3 = 0, and H0: β4 = 0; for heterogeneous
uniform error distributions with γ = 0.05 in the model y = β0 + β1X1 + β2X2 + β3X3

+ β4X4 + β5X5  + (1 + γX1)ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for
n = 20, 30, 60, 90, 150, and 300.   1,000 random samples were used at each
combination of H0, n, and quantile.
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Appendix 2.10.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests for H0: β1 = β2 = β3 = β4 = β5 = 0, H0: β3 = 0, and H0: β4 = 0; for heterogeneous
uniform error distributions with γ = 0.05 in the model y = β0 + β1X1 + β2X2 + β3X3

+ β4X4 + β5X5  + (1 + γX1)ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for
n = 20, 30, 60, 90, 150, and 300.   1,000 random samples were used at each
combination of H0, n, and quantile.
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Appendix 2.11.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests for H0: β3 = β5 = 0 and H0: β4 = β5 = 0 for heterogeneous normal error
distributions with γ = 0.05 in the model y = β0 + β1X1 + β2X2 + β3X3+ β4X4 + β5X5

+ (1 + γX1)ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for n = 20, 30, 60, 90,
150, and 300.   1,000 random samples were used at each combination of H0,
n, and quantile.
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Appendix 2.12.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation F (circles) and Chi-square distributed T (triangles) rankscore
tests for H0: β3 = β5 = 0 and H0: β4 = β5 = 0 for heterogeneous uniform error
distributions with γ = 0.05 in the model y = β0 + β1X1 + β2X2 + β3X3+ β4X4 + β5X5

+ (1 + γX1)ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for n = 20, 30, 60, 90,
150, and 300.   1,000 random samples were used at each combination of H0,
n, and quantile.
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Chapter 3

 A Drop In Dispersion Permutation Test
for Regression Quantile Estimates

Abstract: A drop in dispersion, F-ratio like permutation test for hypothesis testing and

constructing confidence intervals for linear quantile regression estimates (0 � � � 1)

was evaluated for conditions relevant to ecological investigations of animal responses

to their physical environment.  Conditions evaluated included models with 2 - 6

predictors, moderate collinearity among predictors, homogeneous and heterogeneous

errors, small to moderate samples (n = 20 - 300), and central to upper quantiles (0.50 -

0.99).  The drop in dispersion D test maintained Type I errors well for homogeneous

error distributions and provided greater power than rankscore tests, which don’t use the

magnitude of the residuals in their construction.  Type I errors for the D test were

slightly liberal for weighted estimates of heterogeneous error distributions.  The D test

required larger n at more extreme quantiles than the rankscore tests to maintain

reasonable Type I error rates and had more liberal Type I error rates when testing

subhypotheses in multiple regression models.  Confidence intervals on parameters were

constructed based on test inversion for an example application relating trout densities to

stream channel width:depth.
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1. Introduction

Estimating the quantiles (0 � � � 1) of a response variable conditional on some set of

covariates in a linear model has many applications in the biological and ecological

sciences (Terrell et al. 1996, Scharf et al. 1998, Cade et al. 1999, Cade and Guo 2000,

Haire et al. 2000, Eastwood et al. 2001, Dunham et al. 2002).  Quantile regression

models allow the entire conditional distribution of a response variable y to be related to

some covariates X,  providing a richer description of functional changes than is possible

by focusing on just the mean (or other central statistics), yet requiring minimal

distributional assumptions (Koenker and Bassett 1978, 1982,  Koenker and Machado

1999).  Quantile regression estimates are especially enlightening for relationships

involving heterogeneous responses where by definition rates of change are not the same

across all parts of the response distribution.  Many ecological applications of quantile

regression have focused on estimating some upper quantiles to characterize effects of

limiting factors (Terrell et al. 1996, Scharf et al. 1998, Cade et al. 1999, Cade and Guo

2000, Haire et al. 2000, Eastwood et al. 2001, Huston 2002).  Other applications (Allen

et al. 2001, Dunham et al. 2002) have used estimates across the entire [0, 1] interval of

quantiles as a flexible method of characterizing effects associated with heterogeneous

distributions.

Inference methods with asymptotic validity for linear quantile regression models

based on estimates of the covariance matrices (Koenker and Bassett 1978, 1982,

Koenker and Machado 1999) require estimates of the reciprocal of the error density

function at the quantile of interest,  f(F (0)).  These methods often perform poorly at-1
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smaller sample sizes (Koenker 1987, Buchinsky 1991) and the asymptotic theory

becomes suspect at more extreme (>0.7 and <0.3) quantiles (Chernozhukov and

Umantsev 2001).  Koenker (1994) introduced the idea of constructing confidence

intervals by inverting a quantile rankscore test (Gutenbrunner et al. 1993), which does

not require estimating the sparsity function, as an alternative inference procedure that

performed well under linear heteroscedastic regression models and smaller sample

sizes.  Here I consider a drop in dispersion, F-ratio like test that is evaluated with

permutation arguments based on modifications of the least absolute deviation

regression test of Cade and Richards (1996).  This test also avoids the sparsity

estimation issue but unlike the quantile rankscore tests (Koenker 1994, Chapter 2) it

uses the magnitude of the residuals in its construction, potentially providing greater

power and shorter confidence intervals.

Here I evaluated performance of the drop in dispersion permutation test for

central to extreme quantiles, a range of error structures, small to moderate sample sizes,

and model forms likely to be encountered in ecological applications where the objective

is to estimate some organism’s response to its environment.  Weighted forms of the test

based on weighted quantile regression estimates were evaluated for heterogeneous error

distributions.  The drop in dispersion permutation test was applied to a quantile

regression analysis of Lahontan cutthroat trout (Oncorhynchus clarki henshawi)

response to variations in their stream habitat, expanding on the previous analyses of

Dunham et al. (2002).
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2. Quantile Regression Model

The � regression quantile (0 � � � 1) for the heteroscedastic linear location-scale modelth 

y = X  +  is defined as Q (��X) = X (�) and (�) =  + F (�) ; where y is an n × 1y �
-1

vector of dependent responses,  is a p × 1 vector of unknown regression parameters, X

is an n × p matrix of predictors (first column consists of 1's for an intercept term),  is a 

p × 1 vector of unknown scale parameters,  is a diagonal n × n matrix where the n

diagonal elements are the n corresponding ordered elements of the n × 1 vector X

(diag(X )),  is an n × 1 vector of random errors that are independent and identically

distributed (iid), and F  is the inverse of the cumulative distribution of the errors�
-1

(Koenker and Bassett 1982, Buchinsky 1991, Gutenbrunner and Jure�ková 1992,

Koenker and Machado 1999).  Homoscedastic regression models are a special case of

the linear-location scale model when  = (1,0,...,0)� and Q (��X) = X (�), (�) =  +y

(F (�),0,...,0)�, where all parameters other than the intercept (� ) in (�) are the same� 0
-1

for all �.  More general forms of heteroscedastic errors can be accommodated with

regression quantiles (Koenker 1997, Koenker and Machado 1999) but were not

considered here.

The restriction imposed on F  to estimate regression quantiles is that a � �
th

quantile of y - X (�) conditional on X equals 0, F (��X) = 0.  Estimates, b(�), of (�)�
-1

are solutions to the following minimization problem:
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wi is a weight,
and I(·) is the indicator function.
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The estimating equations in (1) yield primal solutions in a modification of the Barrodale

and Roberts (1974) simplex linear program for any specified value of � (Koenker and

d'Orey 1987).  With little additional computation the entire regression quantile process

for all distinct values of � can be estimated (Koenker and d'Orey 1987, 1994).

Consistent estimates with reduced sampling variation for heteroscedastic linear

models can be obtained by implementing weighted versions of the regression quantile

estimators, where weights are based on the sparsity function at a given quantile and

covariate value (Koenker and Portnoy 1996, Koenker and Machado 1999).  In the linear

location-scale model this simplified to using an n × n weights matrix, W = , where-1

the p × 1 vector of scale parameters  would usually have to be estimated in

applications (Gutenbrunner and Jure�ková 1992, Koenker and Zhao 1994, Koenker and 

Machado 1999).  The weighted regression quantile estimates then are given by

which is easily implemented by multiplying y and X by W and then using the

unweighted estimator (1).

3. Test Statistics

The drop in dispersion D test was based on a modification of the drop in dispersion

permutation test developed for least absolute deviation (LAD) regression (Cade and

Richards 1996).  The reduced parameter model, y - X (�) = X (�) + , is2 1 1
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constructed by partitioning X = (X , X ), where X  is n × (p - q) and X  is n × q; and by1 2 1 2

partitioning  = ( , ), where (�) is a (p - q) × 1 vector of unknown nuisance1 2 1

parameters under the null and (�) is a q × 1 vector of parameters specified by the null2

hypothesis H : (�) = (�) (frequently (�) = 0) for the full parameter model y = X (�)0 2 1 1

+ X (�) + ; and y, , and  are as above.  The sum of weighted absolute deviations2 2

minimized in (1) for the weighted version of the full parameter model, Wy = WX (�)1 1

+ WX (�) + W e, where W is a weights matrix as in (2), are denoted SAFw(�) and2 2

for the reduced parameter model, Wy - WX (�) = WX (�) +W e, corresponding to2 1 1

the restrictions under the null hypothesis H : (�) = (�) are denoted SARw(�).  The0 2

test statistic      

               D  = (SARw(�) - SAFw(�))/SAFw(�),                                      (3)o   

was evaluated by permuting the weighted residuals under the null model to the

weighted full model matrix WX, similar to the Cade and Richards (1996) procedure. 

By taking a large random sample m of the n! possible permutations, probability under

the null hypothesis that D � D  was approximated by (the number of D � D  + 1)/(m +o o

1).  When the error distributions are assumed homogeneous so that W = I, where I is

the n × n identity matrix, and � = 0.5, this test statistic is identical to the statistic of

Cade and Richards (1996) for LAD regression.  The weights, W, serve to eliminate the

effects of heterogenous errors so that permuting weighted residuals provide an 

approximation of the sampling distribution of D. 

Permuting residuals (e = y - X b ) under the null reduced parameter model does1 1
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not in general yield exact permutation probabilities except when the null parameter is

just an intercept (� ), but this permutation approach due to Freedman and Lane (1983)0

was found to have perfect correlation asymptotically with the exact test (only possible

when  is known) (Anderson and Robinson 2001) and has performed well in1

simulation studies for least squares (Kennedy and Cade 1996, Anderson and Legendre

1999, Legendre 2000) and least absolute deviation regression (Cade and Richards

1996).  There is some correlation (-(n - 1) ) among the residuals and they don’t have-1

constant variance (E[e e�] = � (I - X (X �X ) X �)), implying that they are not exactly2 -1
1 1 1 1

exchangeable.   Dependency among the residuals decreases with increasing sample size

providing some asymptotic justification for treating them as exchangeable random

variables (Randles 1984).  Commenges (In Press) discusses transformations to preserve

exchangeability of the first two moments of the residuals but those were not pursued

here. 

4. Simulation Experiment

I first conducted a set of Monte Carlo simulations with homogeneous errors to establish

performance for models with simple error structure.  Normal (µ = 0, � = 1), uniform

(min = -2, max = 2), and lognormal (median = 0, � = 0.75) error distributions were used

to provide responses with symmetric, unimodal variation with greatest density at the

center, symmetric variation with constant density, and asymmetric variation with

density in a long upper tail.  Error distributions were centered on their 0.50, 0.75, 0.90,

0.95, or 0.99 quantiles so that F (��X) = 0, providing a range of central to extreme�
-1 

regression quantiles.  Note that similar simulation results for quantiles in the lower tail
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(0.25, 0.10, 0.05, and 0.01) would be obtained for the symmetric error distributions.

Simple 2 parameter and 6 parameter multiple regression models were simulated

for n = 20, 30, 60, 90, 150, and 300.  Independent variables were structured to have a

range of values and correlation structure similar to what might be expected in measures

of forest habitat structure for avian species.  Independent variables were structured so

that X was a column of 1's for the intercept; X  was uniformly distributed (0, 100); X0 1 2

was negatively correlated (r = -0.89) with X  specified by the function X  = 4,000 1 2

-20X  + N(µ = 0, � = 300); X  was positively correlated (r = 0.94) with X  specified by1 3 1

the function X  = 10 + 0.4X  + N(µ = 0, � =16); X  was a 0,1 indicator variable3 1 4

randomly assigning half the sample to each of 2 groups; and X  was the multiplicative5

interaction of X and X .  Thus, X  ranged from 0 - 100 similar to measures of percent3 4 1

tree canopy cover, X  had most values in the range 0 - 5,000 and was inversely related2

to tree cover similar to density (stems/ha) of a shade intolerant shrub, and X  had most3

values in the range 0 - 60 similar to tree height (m) and was positively related to tree

cover.  Variables X and X  were negatively correlated (r = -0.85) with each other2 3

through their indirect functional relation with X .  The indicator variable (X ) and its1 4

interaction with X  (X ) allowed the effect of X  for the regression quantile function to3 5 3

differ in slopes, intercepts, or both terms for the 2 groups.

 Each combination of conditions (quantile, error distribution, sample size, and

model structure) was sampled 1,000 times, and the test statistic D  was computed foro

each sample.  Probabilities for the D test were evaluated with separate m + 1 = 10,000

random samples of the permutation distribution.   Cumulative distribution function
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(cdf) plots of the Type I error probabilities under the null hypothesis were graphed and

compared with the expected uniform cdf.  However, point estimates for � = 0.05 and

0.10, corresponding to coverage for 95% and 90% confidence intervals, were graphed

across the combination of model conditions because the number of graphs required to

display the cdf plots was excessive.  The 99% binomial confidence interval for 1,000

simulations for � = 0.10 is 0.076 - 0.124 and for � = 0.05 is 0.032 - 0.068, which can be

used as a guide to judge how much the estimated Type I error rates exceeded variation

expected from the sampling simulations.    Power under the alternative hypotheses was

graphed only for � = 0.05 across all combinations of conditions, although cdf  plots

were initially examined. 

All data for the simulation studies were generated with functions in S-Plus 2000

(Mathsoft, Inc., Seattle, WA).  Regression quantile estimates and test statistics were

computed by a static memory compilation of Fortran 95 routines implemented in the

Blossom software available from the U. S. Geological Survey

(www.mesc.usgs.gov/products/software/ blossom.shtml). 

4.1 Homogeneous Error Structure - Simple Regression

The simple 2 parameter regression model, y = �  + � X  + �  was evaluated for0 1 1

H : �  = 0 with �  fixed at 6.0 and �  = 0.0, 0.01, 0.05, 0.10, and 0.20.  Type I error rates0 1 0 1

were well maintained at all sample sizes, error distributions, and quantiles, consistent

with exact exchangeability for this hypothesis (Fig 3.1). Type I errors for the 0.75

quantile were nearly identical to those for the 0.50 quantile and, therefore, were  
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Figure 3.1.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation D test for homogeneous lognormal (circles), normal (triangles),
and uniform (squares) error distributions; for H0: β0 = 0 and H0: β1 = 0 in the model
y = β0 + β1X1 + ε, and H0: β3 = 0 in the model y = β0 + β1X1 + β2X2 + β3X3 + β4X4 +
β5X5 + ε; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for n = 20, 30, 60, 90, 150,
and 300.   1,000 random samples were used at each combination of H0:, n, and
quantile.
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not graphed for this or subsequent simulations.  This regression model also was

evaluated for H : �  = 0 with �  fixed at 0.10 and �  = 0.0, 0.5, 1.0, 2.0, and 3.0.  Type I0 0 1 0

error rates for the intercept under then null hypothesis (�  = 0.0) were slightly liberal for0

all quantiles, becoming extremely liberal for n < 150 for 0.99 quantile (Fig. 3.1).  A

comparison of the cdf’s for these two hypotheses for the lognormal error distribution

and n = 90 provides another view of the degree to which H : �  = 0 deviates from the0 0

exactness of H : �  = 0 (Fig 3.2).0 1

Power to detect nonzero slopes (�  = 0.01, 0.05, 0.10, 0.20) was progressively1

lower moving from the 0.50 to 0.99 quantile and this reduction was greatest for the

lognormal error distribution (Fig. 3.3), less for the normal and least for the uniform

error distributions (Appendices 3.1 and 3.2).  For this and subsequent power

simulations, the lognormal error distributions had lowest power and are given in the

Figures; power for normal and uniform error distribution are in Appendix 3.  Power for

the D test was greater (relative power = 1.00 - 1.41) for 0.50 and 0.75 quantiles to much

greater (relative power =1.00 - 4.91) for 0.90 - 0.99 quantiles than for the rankscore

tests (Chapter 2).  Power to detect nonzero intercepts (�  = 0.5, 1.0, 2.0, and 3.0)0

followed a similar reduction with increasing quantile for the lognormal error

distribution, with no effective power for the 0.99 quantile and n < 150 (Fig. 3.3).  The

normal and uniform error distributions had less reduction in power across quantiles for

this hypothesis and had effective power for all samples sizes for the 0.99 quantile

(Appendices 3.1 and 3.2).  The rankscore tests (Chapter 2) had power comparable to the

D test for this hypothesis.
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Figure 3.2.  Cumulative distributions of 1,000 estimated errors for permutation D 
tests of H0: β0 = 0 and H0: β1 = 0 for the model y = β0 + β1X1 + e, and H0: β1 = 0 for
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-1;
for 0.50, 0.90, 0.95, and 0.99 quantiles for the lognormal error distribution and n = 90. 
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combination of effect size, n, and quantile.
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4.2 Homogeneous Error Structure - Multiple Regression

The 6 parameter model, y = �  + � X  + � X  + � X  + � X  + � X  + � , was0 1 1 2 2 3 3 4 4 5 5

evaluated for H : �  = 0 with �  = 36.0, �  = 0.10, �  = -0.005, �  = 2.0, and �  = �  =0 3 0 1 2 4 3 5

0.0.  Type I error rates were always slightly liberal, becoming more liberal with

increasing quantile and decreasing sample size to the point that error rates were totally

unreliable for the 0.99 quantile (Fig. 3.1).  Type I error rates for the uniform error

distribution did not degrade as much as those for the lognormal and normal error

distributions.  The 6 parameter model also was evaluated for H : �  = 0 with �  = 36.0,0 4 0

�  = 0.10, �  = -0.005, �  = 0.05, and �  = �  = 0.0.  A similar pattern of liberal Type I1 2 3 4 5

error rates was found.  Power was not investigated for multiple regression models with

homogeneous errors.

4.3 Heterogeneous Error Structure - Simple Regression

The 2 parameter weighted regression model with heterogeneous errors, wy = w�  +0

w� X  + w(1 +� X )� , was evaluated with �  = 0.05 using the known weights w = (1 +1 1 1

0.05X )  for H : �  = 0 with �  = 6.0 and �  = 0.0.  Type I error rates were slightly1 0 1 0 1
-1

liberal for 0.50 - 0.90 quantiles, becoming increasingly liberal from 0.95 to 0.99

quantiles with decreasing sample size (Fig. 3.4).  Type I error rates were not as liberal

for uniform compared to lognormal and normal error distributions at higher quantiles

and smaller sample sizes.  Examining the cdf’s for this hypothesis for the lognormal

error distribution and n = 90 provides another view of the degree to which H : �  = 0 for0 1

the weighted estimate in the heterogeneous error distribution model deviates from the

exactness of H : �  = 0 in the homogeneous error distribution model (Fig 3.2).  The 0 1
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Figure 3.4.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid);
for the permutation D test for heterogeneous lognormal (circles), normal 
(triangles), and uniform (squares) error distributions; for H0: β0 = 0 and 
H0: β1 = 0 in the weighted modelwy = wβ0 + wβ1X1 + w(1 + γX1)ε with
γ = 0.05 and w = (1 + γX1)

-1; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for
n = 20, 30, 60, 90, 150, and 300.   1,000 random samples were used at each
combination of H0:, n, and quantile.

T
yp

e
 I

 E
rr

o
r 

R
a

te

102



103

discrepancy is similar to that observed when testing the intercept term.  The null model

implied by the weighted model is forced through the origin (because the column vector

of 1's for the intercept have been multiplied by w) and the residuals no longer have their

expected properties when the objective function (1) is minimized.

The H : �  = 0 also was evaluated in the 2 parameter weighted regression model0 0

with heterogeneous errors, wy = w�  + w� X  + w(1 +� X )� , with �  = 0.05 using the0 1 1 1

known weights w = (1 + 0.05X ) , �  = 0.10, and �  = 0.0, 0.5, 1.0, 2.0, and 3.0.  Type I1 1 0
-1

error rates were slightly liberal (Fig. 3.4), but no more so than when testing this

hypothesis for homogeneous error distributions (Fig. 3.1).

Power to detect �  = 0.01, 0.05, 0.10, and 0.20 for the weighted regression1

model with heterogeneous errors declined with increasing quantile and decreasing

sample size more for the lognormal (Fig. 3.5) than the normal and uniform error

distributions (Appendices 3.3 and 3.4).  Power for the lognormal error distribution and

the 0.99 quantile was unreliable for n < 150 because of excessively liberal Type I error

rates for smaller sample sizes.  Power to detect �  = 0.5, 1.0, 2.0, and 3.0 followed a0

similar decline with increasing quantile and decreasing samples size as for

homogeneous error distributions, becoming almost nonexistent for the 0.99 quantile of

the lognormal error distribution (Fig. 3.5).  Uniform and normal error distributions had

effective power for the 0.99 quantile (Appendices 3.3 and 3.4).  Power estimates were

assumed to be slightly inflated because Type I error rates were slightly liberal for the

weighted regression models.
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Figure 3.5.  Estimated power for α = 0.05 for the permutation D test for 
heterogeneous lognormal error distributions for H0: β0 = 0 and H0: β1 = 0 in
the weighted modelwy = wβ0 + wβ1X1 + w(1 + γX1)ε with γ = 0.05 and
w = (1 + γX1)

-1 ; for β0 = 0.0, 0.5, 1.0, 2.0, and 3.0 and for β1 = 0.0, 0.01,
0.05, 0.10, and 0.20; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for 
n = 20 (circle), 30 (triangle), 60 (square), 90 (diamond), 150 (pentagon),
and 300 (star).  1,000 random samples were used at each combination of 
effect size, n, and quantile.
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4.4 Heterogenous Error Structure - Multiple Regression

The 6 parameter model, wy = w(�  + � X  + � X  + � X  + � X  + � X  + (1 +� X )� ), with0 1 1 2 2 3 3 4 4 5 5 1

�  = 0.05 and known weights w = (1 + 0.05X )  was evaluated for the full model1
-1

hypothesis H : �  =  �  = �  = �  = �  = 0 for �  fixed at 36.0 and �  = �  = �  = �  = �  =0 1 2 3 4 5 0 1 2 3 4 5

0 for Type I error rates, and with �  = 0.10, 0.15, 0.20, 0.25 for power.  Type I error3

rates were slightly liberal for 0.50 - 0.95 quantiles, becoming more liberal with

decreasing sample size for the 0.99 quantile, especially for lognormal error distributions

(Fig. 3.6).  Power estimated with 1 of the 5 slope parameters (� ) allowed to be nonzero3

was low to nonexistent for the 0.99 quantile (Fig. 3.8).  Power for this and other

hypotheses for the multiple regression models was evaluated only for the lognormal

error distribution to reduce the amount of computing and reporting.  Power for normal

and uniform error distributions would be greater than or equal to that for the lognormal

error distribution for the quantiles considered.  

Type I error rates for subhypotheses involving continuous variables in the 6

parameter weighted model were evaluated for H : �  = 0 and H : �  = �  = 0 with0 3 0 3 5

� = 36.0, �  = 0.10, �  = -0.005, �  = 2.0, and �  = �  = 0.0.  As elsewhere, Type I error0 1 2 4 3 5

rates were slightly liberal, becoming more liberal with increasing quantile and

decreasing sample size, more so for H : �  = �  = 0 (Fig. 3.7) than for H : �  = 0 (Fig.0 3 5 0 3

3.6).  Power for H : �  = 0 was estimated with �  = 0.10, 0.15, 0.20, and 0.25 for the0 3 3

lognormal error distribution.  Power was low for the 0.90 to nonexistent for the 0.95

and 0.99 quantiles (Fig. 3.8).
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Figure 3.6.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid) for the 
permutation D test for H0: β1 = β2 = β3 = β4 = β5 = 0, H0: β3 = 0, and H0: β4 = 0; 
for heterogeneous lognormal (circles), normal (triangles) and uniform (squares) error 
distributions with γ = 0.05 in the weighted model wy = w(β0 + β1X1 + β2X2 + β3X3 +
β4X4 + β5X5  + (1 + γX1)ε) with w = (1 + γX1)

-1; for 0.50, 0.90, 0.95, and 0.99 quantiles;
and for n = 20, 30, 60, 90, 150, and 300.   1,000 random samples were used at each
combination of H0, n, and quantile.
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Figure 3.7.  Estimated type I error rates for α = 0.05 (open) and 0.10 (solid) for the 
permutation D test for H0: β3 = β5 = 0 and H0: β4 = β5 = 0; for heterogeneous
lognormal (circles), normal (triangles) and uniform (squares) error distributions
with γ = 0.05 in the weighted model wy = w(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 

+ (1 + γX1)ε) with w = (1 + γX1)
-1; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for

n = 20, 30, 60, 90, 150, and 300.   1,000 random samples were used at each
combination of H0, n, and quantile.
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Figure 3.8.  Estimated power for α = 0.05 for the permutation D tests for 
H0: β1 = β2 = β3 = β4 = β5 = 0, H0: β3 = 0, and H0: β4 = 0; for heterogeneous lognormal
error distributions with γ = 0.05 in the weighted model wy=  w(β0 + β1X1 + β2X2 + β3X3

+ β4X4 + β5X5  + (1 + γX1)ε); for 0.50, 0.90, 0.95, and 0.99 quantiles; and for
n = 20 (circle), 30 (triangle), 60 (square), 90 (diamond),150 (pentagon), and 300 (star).
1,000 random samples were used at each combination of H0, n, and quantile.  
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Subhypotheses involving categorical predictors in the 6 parameter weighted

model were evaluated for H : �  = 0 and H : �  = �  = 0 with � = 36.0, �  = 0.10,0 4 0 4 5 0 1

�  = -0.005, �  = 0.05, and �  = �  = 0.0.  Type I error rates for H : �  = 0 (Fig. 3.6) and2 3 4 5 0 4

H : �  = �  = 0 (Fig. 3.7) had similar patterns as the Type I error rates for subhypotheses0 4 5

for continuous predictors evaluated above.  Power was evaluated for the subhypothesis

H : �  = 0 for �  = 1.5, 3.0, 6.0, and 12.0 and the lognormal error distribution.  Power0 4 4

declined with increasing quantiles and decreasing sample size but was grossly inflated

at smaller sample sizes for 0.95 and 0.99 quantiles (Fig. 3.8) because of excessively

liberal Type I error rates.

5. Example Application

I constructed confidence intervals for quantile regression estimates of Lahontan

cutthroat trout Oncorhynchus clarki henshawi density (trout m ) as a function of stream-1

channel morphology (width:depth ratio) for 13 small streams in Nevada sampled over 7

years (Dunham et al. 2002).  Width:depth ratio is a measure that integrates stream

channel characteristics thought to be related to small stream integrity and, thus, fish

populations and is easily measured for assessing fish habitat conditions and land use

impacts over large regions.  Lahontan cutthroat trout are a threatened species of special

interest to federal land management agencies.

Here I considered the nonlinear model y = exp(�  + � X  + � ), where y is trout0 1 1

m  and X  is width:depth ratio, for n = 71 observations of streams for 1993 to 1999-1
1

(Dunham et al. 2002).  The model was estimated in the weighted linear form ln wy =

w�  + w� X  + w�  and estimates for selected regression quantiles were plotted by0 1 1
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exponentiating to back transform to the nonlinear form (Fig. 3.9).  The vector of

weights w were identical to those used with the quantile rankscore tests (Chapter 2). 

Weights were estimated by computing the average pairwise differences between the 76

unweighted regression quantile estimates b (�) to estimate �  and b (�) to estimate �  in0 0 1 1

the standard deviation function � - � X  and then taking the reciprocal, w = (1.310 -0  1 1

0.017X ) .  Estimates of parameters for all quantiles were plotted as a step function1
-1

with 90% confidence intervals for 19 quantiles between 0.05 and 0.95 by increments of

0.05 (Fig. 3.9).

Interval endpoints were estimated by inverting the D test as an alternative to

inverting the quantile rankscore tests used by Dunham et al. (2002) and in Chapter 2. 

Starting values for the manual iteration of the test inversion were based on the interval

endpoints estimated by the rankscore tests (Chapter 2). These values were then used as

hypothesized parameter values of �(�) in the transformation y - X �(�) to test the H :2 0

(�) = �(�) with (3), where  was either �  or �  depending on the parameter being2 2 0 1

tested.  I used m + 1 = 100,000 permutations to compute probabilities for the D tests

associated with confidence interval endpoints.

The 90% confidence intervals estimated by inverting the D test (Fig. 3.9) were

smoother than those for the rankscore tests (Chapter 2) because the permutation

distribution for the D test was much more continuous than the distributions of the

rankscore tests.  Linear interpolation between hypothesize parameter values was not

required to achieve P = � = 0.10 with the D test as it was for the rankscore tests

(Koenker 1994, Chapter 2).  The D test based 90% confidence intervals were slightly 
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narrower for lower quantiles than those based on inverting rankscore tests (Chapter 2),

but nearly identical in width for the upper quantiles.  Differences between the D test and

the quantile rankscore based intervals (Chapter 2) were not sufficient to alter any

conclusions about the effects of width:depth ratios on cutthroat trout populations.

Confidence bands estimated by the D test supported an interpretation that increasing

stream width:depth ratios from 15 to 45 decreased the highest 20% of trout densities 

(� � 0.80) by 9 to 65% [exp(-0.003 × 30) = 0.914 and exp(-0.035 × 30) = 0.350],

similar to conclusion based on the quantile rankscore test intervals (Dunham et al.

2002, Chapter 2).

 6. Discussion

Although the drop in dispersion permutation D test had better power than the quantile

rankscore tests for hypotheses where both maintained reasonable Type I errors, it had

extremely liberal Type I error rates at smaller samples and less extreme quantiles than

the quantile rankscore tests (Chapter 2). Type I error rate failure occurred more rapidly

with decreasing sample size and increasing quantile for the lognormal error distribution

than for normal or uniform error distributions because it has a long-tail with low density

of observations.  My example application with the Lahontan cutthroat trout data

suggested that the differences between the drop in dispersion permutation test and

quantile rankscore tests may not always be sufficient to substantively affect the

interpretation of an analysis when quantiles used are not too extreme (e.g., 0.05 � � �

0.95).  When estimating models for more extreme quantiles (e.g., � = 0.99), fairly large

samples (n > 300) will be required for models with more than just a few parameters to
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ensure reliable confidence intervals based on either class of test.

The slightly liberal nature of the permutation D test when testing the intercept

term in unweighted models and any parameter in weighted models was consistent with

simulation results for permutation versions of the rankscore tests (Chapter 2).  There is

additional sampling variation not accounted for by the permutation distribution of the

test statistics when the null model was constrained through the origin.  If the number of

positive, negative, and zero residuals are denoted by N , N , N , respectively, and if N +  -  0  0

= p - q under the null model, then there are at most n� negative residuals (N  � n� � N -  -

+ N ) and at most n(1 - �) positive residuals (N � n[1 - �]� N + N ) when the null 0  +  +  0

model includes an intercept (Koenker and Bassett 1978, Koenker and Portnoy 1996). 

When the null model does not include an intercept, the limits on the number of positive

(negative) residuals exceeded these values by amounts consistent with binomial random

variation with success probability 1 - � (or � for negative residuals).  This is similar to

least squares regression models forced through the origin which do not have the mean

of the residuals equal to zero.  Legendre and Desdevises (In Press) proposed a solution

for permutation tests for least squares regression by using a double permutation scheme

where the first step varies the number of positive (negative) residuals as a binomial

random variable with success probability 0.5. and the second step permutes these

residuals across the rows of X.  This procedure was easily modified for the permutation

version of the quantile rankscore test (Chapter 2) but needs to be investigated for

application to the D test.
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My simulation experiment avoided the issue of how to estimate weights for

heteroscedastic models by using the known standard deviation function.  In

applications, this function is not known and the weights must be estimated.  I used a

simple pairwise difference approach based on the initial unweighted estimates for

estimating weights in my example application.  Other approaches for estimating

weights include regressing absolute values of residuals from an unweighted fit of the

0.5 quantile on the independent variables for linear location-scale models (Zhou and

Portnoy 1998) and the sparsity estimation approach for more general heteroscedastic

models (Koenker and Machado 1999).
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Appendix 3

 Simulation Results for Normal and
 Uniform Error Distributions 
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Appendix 3.1.  Estimated power for α = 0.05 for the permutation D tests for 
homogeneous normal error distributions for H0: β0 = 0 and H0: β1 = 0 in
the model y = β0 + β1X1 + ε; for β0 = 0.0, 0.5, 1.0, 2.0, and 3.0 and for
β1 = 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50, 0.90, 0.95, and 0.99 quantiles;
and for n = 20 (circle), 30 (triangle), 60 (square), 90 (diamond),
150 (pentagon), and 300 (star).  1,000 random samples were used at each
combination of effect size, n, and quantile.
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Appendix 3.2.  Estimated power for α = 0.05 for the permutation D tests for 
homogeneous uniform error distributions for H0: β0 = 0 and H0: β1 = 0 in
the model y = β0 + β1X1 + ε; for β0 = 0.0, 0.5, 1.0, 2.0, and 3.0 and for
β1 = 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50, 0.90, 0.95, and 0.99 quantiles;
and for n = 20 (circle), 30 (triangle), 60 (square), 90 (diamond),
150 (pentagon), and 300 (star).  1,000 random samples were used at each
combination of effect size, n, and quantile.
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Appendix 3.3.  Estimated power for α = 0.05 for the permutation D test for 
heterogeneous normal error distributions for H0: β0 = 0 and H0: β1 = 0 in
the weighted modelwy = wβ0 + wβ1X1 + w(1 + γX1)ε with γ = 0.05 and
w = (1 + γX1)

-1 ; for β0 = 0.0, 0.5, 1.0, 2.0, and 3.0 and for β1 = 0.0, 0.01,
0.05, 0.10, and 0.20; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for 
n = 20 (circle), 30 (triangle), 60 (square), 90 (diamond), 150 (pentagon),
and 300 (star).  1,000 random samples were used at each combination of 
effect size, n, and quantile.
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Appendix 3.4.  Estimated power for α = 0.05 for the permutation D test for 
heterogeneous lognormal error distributions for H0: β0 = 0 and H0: β1 = 0 in
the weighted modelwy = wβ0 + wβ1X1 + w(1 + γX1)ε with γ = 0.05 and
w = (1 + γX1)

-1 ; for β0 = 0.0, 0.5, 1.0, 2.0, and 3.0 and for β1 = 0.0, 0.01,
0.05, 0.10, and 0.20; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for 
n = 20 (circle), 30 (triangle), 60 (square), 90 (diamond), 150 (pentagon),
and 300 (star).  1,000 random samples were used at each combination of 
effect size, n, and quantile.
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Chapter 4

Estimating Effects of Limiting Habitat Resources:
Hidden Bias and Spatial Structure

Abstract: Simulations from a large (N = 10,000) finite population representing grid

areas on a landscape were made to demonstrate various forms of hidden bias that might

occur when the effect of a measured habitat variable on some animal was confounded

with the effect of another unmeasured variable (spatially and not spatially structured). 

Regression quantile (0� � � 1) parameters for linear models that excluded the

important, unmeasured variable were used to evaluate bias relative to parameters from

the generating model.  Depending on whether interactions of the measured habitat and

unmeasured variable were negative (interference interactions) or positive (facilitation

interactions), either upper (� >0.5) or lower (� < 0.5) quantile regression parameters

were less biased than mean rate parameters.  Sampling (n = 20 - 300) simulations

demonstrated that regression quantile estimates and confidence intervals constructed by

inverting rankscore tests provided valid coverage of these biased parameters.  Local

forms of quantile weighting were required for obtaining correct Type I error rates and

confidence interval coverage.  Heterogeneous, nonlinear response patterns occurred in

simulations with correlations between the measured and unmeasured variables.  When

the unmeasured variable was spatially structured, variation in parameters across

quantiles associated with effects of the habitat variable were reduced by modeling the

spatial trend surface as a cubic polynomial of location coordinates, but substantial



125

hidden bias in the parameters remained.  Quantile regression was used to estimate

effects of physical habitat resources on a bivalve mussel (Macomona liliana) in the

spatially structured landscape of a New Zealand harbor.

1. Introduction

The relationship between an organism and its habitat is of theoretical interest in ecology

because it is fundamentally tied to questions about distribution and abundance (Wiens

1989, Huston 2002).  Habitat relationships also are important in natural resource

management because environmental regulations in the United States (e.g., National

Environmental Policy Act, Fish and Wildlife Coordination Act, National Forest

Management Act) mandate that management agencies consider impacts to fish and

wildlife habitat in their land use planning (Morrison et al. 1998).  Mathematical and

statistical models commonly are used for quantifying the relationship between an

organism and the resources provided by its habitat.  Habitat models are used for

predicting changes in distribution and abundance due to changes in resources driven by

alternative land management or environmental changes (Stauffer 2002).  Reliability of 

quantitative predictions from animal habitat models has been questioned, however, 

because factors other than the resources provided by habitat may limit animal

populations (Rotenberry 1986, Fausch et al. 1988, Terrell et al. 1996, Terrell and

Carpenter 1997).  Typically, not all factors that limit populations are measured and

included in the models, either due to logistical constraints or because they are unknown. 

As a consequence, predicted responses to changes in habitat often lack the generality to

be considered reliable statements of outcomes likely to occur at other times or places
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than those originally sampled.  This hinders both the development of general theory

related to resource selection and the utility of models for predicting outcomes of

alternative management or conservation actions.  

We can envision the distribution and abundance of any species as being

constrained by biophysical factors (e.g., climate, soil productivity), habitat resources

(e.g., vegetation providing food and cover), and interspecific (e.g., competition and

predation) and intraspecific (e.g., density dependent behavioral responses) biotic

interactions (Morrison 2001, Huston 2002, O’Connor 2002).  When none of the factors

are limiting over some interval of time and space, then the species will be locally

abundant.  When any single factor is limiting, the species will be constrained to a

locally lower abundance than expected if all factors are permissive.  Processes

associated with the constraints operate at different rates, slower for most biophysical

factors and faster for biotic interactions.  If factors that are the active constraint limiting

species abundance at some sample locations are unmeasured, then the species response

may exhibit heterogeneous variation across levels of the measured habitat resources

simply because they are not limiting at all times or locations sampled (Kaiser et al.

1994, Cade et al. 1999).  Heterogeneity arises due to interactions among the multiple

biotic and abiotic factors that affect growth, survival, and reproduction of an organism,

where the factor that is limiting differs among sample locations and times (Van Horne

and Wiens 1991, Huston 2002).  When we measure only a subset of the potential

limiting factors such as habitat resources, it is reasonable to expect a rather large

component of unexplained variation to remain in our models, especially as we increase
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the spatial and temporal extent of our sampling.  The variance amplification hypothesis

of Huston (2002) suggests that variation in abundance (or other measures such as

biomass, survival, or fecundity) increases as habitat quality increases because large

variation in population size can only occur where levels of habitat resources permit high

abundance when other factors are not limiting.  

Huston (2002) and O’Connor (2002) suggested that viewing relationships

between organisms and resources provided by their habitat as constraints rather than as

correlates is a paradigm shift affecting how we model animal habitat relationships.  The

essence of this idea is that much of the useful information about how organisms

respond to changes in levels of resources may not be found in statistical estimates of

rates of change in mean responses but in estimates of rates of change near maximum

responses.  Changes in responses near the extremes are thought to better represent rates

of change when habitat is the constraint rather than other unmeasured processes.  Rates

of change in a response variable (y) as a function of some predictor variables (X) differ

from the center to the extremes of the distributions in heteroscedastic regression models

by definition (Terrell et al. 1996, Cade et al. 1999).  Statistical difficulties associated

with estimating effects at the extremes of heterogeneous response distributions and

some solutions have been discussed by Kaiser et al. (1994), Terrell et al. (1996),

Thomson et al. (1996), Cade et al. (1999), and Bi et al. (2000).

Quantile regression has been used to estimate effects of ecological limiting

factors (Scharf et al. 1998, Cade et al. 1999, Cade and Guo 2000, Huston 2002) because

it provides statistical estimates of rates of change in selected or all parts of a response
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variable distribution.  Because quantile regression estimates rates of change across all

parts of a response distribution, it is especially informative for modeling heterogeneous

distributions like those in animal habitat relationships (Terrell et al. 1996, Cade et al.

1999, Dunham et al. 2002, Huston 2002).  It is possible to focus estimation on a

selected part of the response distribution near the maximum (e.g, 90  to 99th th

percentiles) if it is reasonable to assume that the unmeasured processes are only likely

to reduce rates of change in the responses (Kaiser et al. 1994, Terrell et al. 1996, Cade

et al. 1999, Cade and Guo 2000).  This is implicit in the variance amplification

hypothesis of Huston (2002).  Quantile regression has been used to estimate

relationships between stream fish populations and their habitat (Terrell et al. 1996,

Dunham et al. 2002); ocean fish and spawning habitat (Eastwood et al. 2001); and

breeding grassland birds, habitat, and landscape metrics (Haire et al. 2000).  

My objectives were to further explore assumptions about confounded relations

between measured habitat variables and unmeasured variables for other important

processes and to evaluate the statistical performance of regression quantile estimates

and rankscore tests under these conditions of hidden bias.  I examined assumptions

about the interactions among habitat resources and other limiting factors that would

support focusing on estimated rates of change in selected portions of the species

response distribution (e.g., the upper quantiles).  Sampling distributions for estimates of

various quantiles of a species response distribution and associated rankscore test

statistics were simulated for a range of interaction and correlation structures between

limiting habitat resources, which were considered measured, and some additional
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limiting factors, which were considered unmeasured.  The estimating models contained

various degrees of hidden bias (sensu Rosenbaum 1991, 1995, 1999) because rates of

change estimated for the measured variables were confounded with effects of the

unmeasured variables.  Thus, unlike the analyses in Chapters 2 and 3, heterogeneous

variance structure of the simulated data was not completely specified by a function of

the measured predictors included in the estimating models.  Simulated data were

generated to mimic spatially structured processes on a landscape.  The potential to

account for unmeasured limiting factors by modeling spatial trend (Borcard et al. 1992)

with quantile regression also was investigated, and a case study was conducted on

previously published data (Legendre et al. 1997).

2.  Quantile Regression Models With Unmeasured Variables

To explore patterns of heterogeneity due to missing information on some important

limiting factor other than habitat resources, I extended the linear model assumptions

beyond those considered by Cade et al. (1999) and Huston (2002).  Data were generated

from a 2 variable linear model with interaction, y = � X  + � X  + � X + � X X  + � ,0 0 1 1 2 2 3 1 2

where y was the dependent response variable, X  was 1 for the intercept, X  (uniform [0,0 1

50]) was the measured habitat variable, X  (uniform [0, 4,000]) was a variable for some2

other limiting process that was not measured and available for the estimating model,

and �  was a random error term that was independent and identically distributed (iid). 

Error distributions were lognormal (median = 0, � = 0.75) to create asymmetric

distributions or uniform [-0.50, 0.50] to create symmetric distributions.  By varying the

correlation between X  and X and direction and size of interaction effects due to � , it1 2 3
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was possible to simulate a range of linear, nonlinear,  homogeneous, and heterogeneous

distribution patterns associated with an estimating model, y = � X  + � X  + � �, where � �0 0 1 1

includes the generating error term plus the effect of unmeasured covariates, i.e.,  � � =  �

+ � X + � X X  (Table 4.1).  Note that �  and �  will not in general be equivalent to �2 2 3 1 2 0 1 0

and � , although they may differ less for some quantiles.1

Table 4.1.  Parameter values in hidden bias simulations and direction of bias in � (�)1

relative to �  where generating models were y = � X  + � X  + � X + � X X  + � , and1 0 0 1 1 2 2 3 1 2

estimating models were y = � X + � X  + � �.0 0  1 1

Generating X  spatially Less biased
Model � � � � r(X , X ) structured � (�)0 1 2 3 1 2

2

1

Additive 1.0 0.41 0.005 0.0000 0.00 No � similar

Interference 1.0 0.41 0.0 -0.0001 0.00 No increasing � 

Facilitation 1.0 0.01 0.0  0.0001 0.00 No decreasing � 

Interference 1.0 0.41 0.0 -0.0001 0.56 No increasing �

Interference 1.0 0.41 0.0 -0.0001 0.92 No increasing �

Interference 1.0 0.41 0.0 -0.0001 0.00 Yes increasing �

   
The � regression quantile (0 � � � 1) of the generating model was defined asth 

Q (��X , X , X , X X ) = � (�)X  + � X  + � X  + � X X , where � (�) = �  + F (�) andy 0 1 2 1 2 0 0  1 1 2 2 3 1 2 0 0 � -1

F  was the inverse of the cumulative distribution of the errors.  This is just a� -1

conventional homoscedastic linear regression model where all parameters other than the

intercept (	 ) are the same for all quantiles �, i.e. parallel hyperplanes (Cade et al.0

1999).  The � regression quantile of the estimating model where the effect of theth 

unmeasured covariate X  was not estimable was Q (��X , X ,) = 
 (�)X  +� (�)X .  In the2 y 0 1 0 0 1 1
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estimating model both the intercept � (�) and slope � (�) for the measured covariate may0 1

vary with the quantile � because the modified error term � � =  �  + � X + � X X  included2 2 3 1 2

the additive random component and a multiplicative component that was a function of

the measured covariate X , potentially creating mixture distributions that were not1

identically distributed.  Because the parameters of these mixture distributions were not

necessarily identifiable, I took a random sample of N = 10,000 and treated this as a

large, finite population.  I compared regression quantiles for � (�) and � (�) from the0 1

estimating model with � (�) and� (�) from the generating model for the finite0  1  

populations to examine differences in effects associated with the habitat variable (X )1

due to different interaction effects and correlations with the unmeasured variable (X ).2

Sampling distributions of estimates and associated rankscore test statistics

(Chapter 2) for the estimating model with heterogeneous mixture distributions were

evaluated by taking 1,000 samples of  n = 20, 30, 60, 90, 150, and 300 without

replacement from the finite populations of N = 10,000.  Rankscore tests evaluated were

the asymptotic Chi-square distributed T, the permutation F, and the double permutation 

F for null models constrained through the origin (Chapter 2).  The large, finite

population can be thought of as 10,000 100-ha blocks occurring on a landscape of 100

× 100 km extent.

Spatial structuring was accomplished by relating the unmeasured limiting factor

X  to latitude (LAT) and longitude (LONG) coordinates for the center of 10,000 square2

blocks on a 100 × 100 grid.  I used a cubic polynomial spatial trend surface model

(Borcard et al. 1992, Legendre et al. 1997) on mean centered LAT and LONG



132

coordinates (-50 to 50, µ = 0) with X = 2,000 + 4.5LONG + 7.5LAT + 0.1LONG  -2 
 2

0.2LAT  + 0.005LONG  + � , with �  uniformly distributed (-900, 900) to yield an R  = 2  3 2

0.426 with the least squares regression estimate of the spatial trend surface (Fig.4.1). 

The spatially structured X had values ranging from 0 to 4,000 and was uncorrelated2  

with X .  Obviously, similar spatial structuring could have been induced in either the1

response variable y or in the measured habitat variable X .1

3. Patterns of Effects Due to Confounding with Unmeasured Processes

To explore patterns associated with missing information on some important generating

process, I started with the simplest case of no spatial structuring, no correlation

between the measured (X ) and unmeasured (X ) variables, and no interaction effect (
�

1 2 3

= 0.0) in the additive generating model y = 
�

X  + 
�

X  + 
�

X + 
�

X X  + � ; 
�

 = 1.0, 
�

=0 0 1 1 2 2 3 1 2 0 1 

0.41, 
�

 = 0.005, and 
�

= 0.0.  If the estimating model y = � X  +� X  + � � was used2 3 0 0 1 1

because X  was unmeasured, all the unexplained variation due to 
�

 was additive in the2 2

new error term � � = �  + 0.005×X , which caused differences between the intercept2

parameters for the generating, 
�

, and estimating, � , models but only small differences0 0

between the slope parameters 
�

 and �  (Fig.4.2).  The estimating model had1 1

homogeneous variances like the generating model but with  bias in intercepts and no

bias in slopes.  Thus, rates of change due to X  estimated for any quantile or for the1

mean with least squares regression would be similar in repeated random sampling.  This

example clarified why the heterogeneous constraint patterns investigated by Terrell et

al. (1996), Cade et al. (1999), and Huston (2002) imply that there must be more than

just additive effects between the measured and unmeasured processes in the
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Figure 4.1.  Cubic polynomial spatial trend surface used in simulations to generate
the values of X2, an unmeasured nonhabitat variable that was not estimable in
simulations.  Surface plotted is for the expected value of X2 = 2,000 + 4.5LONG
+ 7.5LAT+ 0.1LONG 2 - 0.2LAT 2 + 0.005LONG 3 + ε , with ε uniformly distributed
(-900, 900).
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Figure 4.2.  (A) A sample (n = 150) from the N = 10,000 population for the additive
generating model y = θ0X0 + θ1X1 + θ2X2 + θ3X1X2 + ε ; θ0 = 1.0, θ1 = 0.41, θ2 = 0.005,
θ3 = 0.0, and ε lognormally distributed (median = 0, σ = 0.75).  Lines plotted are for
regression quantile estimates (τ ∈{0.95, 0.90, 0.75, 0.50, 0.25, 0.10, 0.05}) when the
estimating model is y = β0X0 + β1X1 + ε′.  (B) Shows β0(τ) and θ0(τ) deviating
more at higher quantiles (τ) (θ’s are dashed and β’s are solid lines).  The ordinary
Least squares β0 = 11.326.  (C) Shows β1(τ) and θ1(τ) deviating slightly for any
quantile.  The ordinary least squares β1 = 0.381.
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linear model.

A  multiplicative interference interaction (
�

< 0.0) model with no spatial3 

structuring and no correlation between measured and unmeasured variables with 
�

 =0

1.0, 
�

= 0.41, 
�

 = 0.0, and 
�

= -0.0001 was estimated without information about the1 2 3 

interaction effect, yielding an increasing variance pattern similar to those discussed by

Terrell et al. (1996), Thomson et al. (1996), Cade et al. (1999), and Huston (2002). 

Here both intercept (� ) and slope (� ) parameters for the different quantiles of the0 1

estimating model were biased relative to 
�

 and 
�

 of the generating model (Fig.4.3).0 1

Values of � (�) at higher quantiles (� > 0.90) were the least biased relative to � .  By1 1

algebraically reexpressing the interaction effects associated with the measured habitat

variable in the generating model as (�  + � X )X  it is possible to explain the source of1 3 2 1

differing values of � (�) across quantiles.  The � (�) for higher quantiles are effects of1 1  

the measured habitat variable, �  minus a small quantity, when the unmeasured variable1

X  is close to its minimum of zero (-0.0001×X  � 0).  The � (�) for lower quantiles are2 2 1

effects of the measured habitat variable, �  minus a large quantity, when the1

unmeasured variable X  is close to its maximum of 4,000 (-0.0001×X  � -0.40).  The2 2

lognormal error distribution used in this example resulted in a mixture distribution (� � =

�  + -0.0001X X ) that prevented the convergence of � (�) with �  at highest quantiles. 1 2 1 1

However, when this example was simulated with the uniform error distribution,	 (�) 1

converged with 
  at the highest quantiles.  The lesson is that we can never be sure of1

the magnitude of bias associated with effects estimated for some upper quantiles since

in applications we will never know the exact distributional form of the errors. 



X

Y

0 10 20 30 40 50

θ 0
/β

0

0

5

10

15

20

25

-5

0

5

10

15

20

A

B

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

θ 1
/β

1

0.0

0.1

0.2

0.3

0.4

0.5
C

Figure 4.3.  (A) A sample (n = 150) from the N = 10,000 population for the interference
interaction generating model y = θ0X0 + θ1X1 + θ2X2 + θ3X1X2 + ε ; θ0 = 1.0, θ1 = 0.41,
θ2 = 0.0, θ3 = -0.0001, and ε lognormally distributed (median = 0, σ = 0.75).  Lines
plotted are for regression quantile estimates (τ ∈{0.95, 0.90, 0.75, 0.50, 0.25, 0.10,
0.05}) when the estimating model is y = β0X0 + β1X1 + ε′.  (B) Shows β0(τ) and
θ0(τ) deviating slightly across the quantiles (τ) (θ’s are dashed and β’s are solid lines).
The ordinary least squares β0 = 1.438.  (C) Shows β1(τ) and θ1(τ) deviating less for 
higher quantiles.  The ordinary least squares β1 = 0.204.
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However, we can be confident that estimates for upper quantiles are less biased than

those for lower quantiles or for the mean (least squares regression) when the

assumption about interference interactions is reasonable, because higher quantile

estimates of � (�) include interaction effects at lower values of the unmeasured variable.1

  A multiplicative facilitation interaction (� > 0.0) model with no spatial3 

structuring and no correlation between measured and unmeasured processes with �  =0

1.0, � = 0.01, �  = 0.0, and � = 0.0001 was generated and then estimated without1 2 3 

information about the interaction effect.  This yielded an increasing variance pattern

similar to the previous example for the interference interaction (Fig. 4.4). Here, � (�) at1

lower quantiles (� <0.05) were the least biased relative to � .  Algebraically1

reexpressing the interaction effects associated with the measured habitat variable as in

the previous example, indicates that � (�)for higher quantiles are effects of the1

measured habitat variable, �  plus a large quantity, when the unmeasured variable X  is1 2

close to its maximum of 4,000 (0.0001×X  � 0.40).  The � (�) for lower quantiles are2 1

effects of the measured habitat variable, �  plus a small quantity, when the unmeasured1

variable X  is close to its minimum of zero (0.0001×X  � 0).  The lesson is that2 2

selecting lower or upper quantiles to provide less biased estimates of effects of some

measured habitat variable when effects of unmeasured variables are negligible (i.e,

habitat as the limiting constraint) is critically dependent on the assumed type of

interaction (+ for facilitation or - for interference) between the variables.  While

interference interactions may be more common in ecological systems, facilitation
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Figure 4.4.  (A) A sample (n = 150) from the N = 10,000 population for the facilitation
interaction generating model y = θ0X0 + θ1X1 + θ2X2 + θ3X1X2 + ε ; θ0 = 1.0, θ1 = 0.01,
θ2 = 0.0, θ3 = 0.0001, and ε lognormally distributed (median = 0, σ = 0.75).  Lines
plotted are for regression quantile estimates (τ ∈{0.95, 0.90, 0.75, 0.50, 0.25, 0.10,
0.05}) when the estimating model is y = β0X0 + β1X1 + ε′.  (B) Shows β0(τ) and
θ0(τ) deviating slightly across the quantiles (τ) (θ’s are dashed and β’s are solid lines).
The ordinary least squares β0 = 1.307.  (C) Shows β1(τ) and θ1(τ) deviating less for 
lower quantiles.  The ordinary least squares β1 = 0.211.

138



139

interactions might occur in situations where over short time spans the resources

provided by the habitat were insufficient to support the population, e.g., salmonid

populations reproducing in streams that lack the food or cover resources to sustain them

throughout their life cycle.  A determination of whether interference or facilitation

interactions are likely requires knowledge obtained from sources other than the data

being analyzed. 

A slightly more complicated interference interaction model was simulated with

varying  amounts of correlation (r = 0.56 and 0.92) between the measured habitat

variable X  and the unmeasured variable X  with �  = 1.0, � = 0.41, �  = 0.0, and1 2 0 1 2

� = -0.0001.  The estimating model without the interaction effect now yields an3 

increasing variance pattern with slight nonlinearity evident for r = 0.56 and a more

homogeneous variance pattern with stronger nonlinearity for r = 0.92 (Fig. 4.5).  The

source of the nonlinearity is explained by recognizing that the interaction effect is X  ×1

X  but because of the correlation structure X  is a function of X , e.g., r = 0.56 was2 2 1

achieved by the function X  = 1,200 + 32.0 ×X  + uniform random number [-1200,2 1

1200].  So the interaction effect was a function involving X , a quadratic polynomial. 1
2

Depending on the sign of the interaction coefficient (� ) and sign of the correlation (r),3

nonlinear functions may curve upward (+, + and -,-) or downward (+, - and -, +).  The

lesson is that correlation between measured habitat resources and unmeasured variables

results in nonlinear response relationships, the stronger the correlation the greater the

nonlinearity and less heterogenous the response.  This suggests that some surrogate

variable that is strongly correlated with the unmeasured variables might help account
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Figure 4.5.  (A) A sample (n = 150) from the N = 10,000 population of grid cells from
the interference interaction generating model as in Figure 4.3 but with r(X1, X2) = 0.56 
and 0.92.  Lines plotted are for selected regression quantile estimates when the
estimating model is y = β0X0 + β1X1 + β2X1

2 + ε′ because X2 was not measured.
(B) Shows β0(τ) and θ0(τ) deviating slightly for some quantiles (τ) (θ’s have dashed and
β’s have solid lines).  (C) Shows β1(τ) and θ1(τ) deviating less for higher quantiles and
for r(X1, X2) = 0.92.  (D) Shows β2(τ) across quantiles with more negative estimates for
r(X1, X2) = 0.92 indicating greater nonlinearity.                                                             
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for some of the variation in the modeled relationships.

The spatial coordinates of sample locations are a potential set of surrogate

variables for unmeasured processes that are spatially structured.  An interference

interaction model was simulated with no correlation between measured and unmeasured

variables but with the unmeasured variable related to latitudinal and longitudinal

coordinates (Fig. 4.1) and �  = 1.0, � = 0.41, �  = 0.0, and � = -0.0001.  The estimating0 1 2 3 

model y = � X  +� X  + � X ×LAT + � X ×LONG + � X ×LAT  + � X ×LONG  +0 0 1 1 2 1 3 1 4 1 5 1
2 2

� X ×LONG  +  � � had relatively homogeneous effects across quantiles for the6 1
3

interaction of the measured habitat variable with cubic polynomial terms (�  - � ) for2 6

the spatial trend surface (Fig. 4.6).  Variation in � (�) across quantiles was evident for1

the measured habitat variable with less bias relative to � at higher quantiles.  Notice by1 

comparing � (�) in Figure 4.6, where some of the effect of the unmeasured variable was1

accounted for by the spatial trend, with � (�) in Figure 4.3, where it was not, that1

variation in rate parameters across quantiles was less for the former model although

bias was greater for parameters at higher quantiles.  Stronger spatial structuring of the

unmeasured variable (X ) would have produced less variation in � (�) across quantiles2 1

and less bias relative to � .  However, the amount of variance explained (R  = 0.426)1
2

with the spatial trend surface simulated was typical of the better results achieved in

ecological investigations (e.g., Legendre et al. 1997).

In applications of the spatial trend surface, interactions of environmental

covariates and cubic polynomial terms usually were not estimated (Borcard et al. 1992,

Legendre et al. 1997, Legendre and Legendre 1998, Lichstein et al. 2002).  My



Figure 4.6.  Parameters for the N = 10,000 population of grid cells from the interference
interaction generating model as in Figure 4.3 but with X2 = 2,000 + 4.5LONG+ 7.5LAT
+ 0.1LONG 2 - 0.2LAT 2 + 0.005LONG 3 + ε, with ε uniformly distributed (-900, 900)
(θ’s have dashed lines); and for the estimating model y = β0X0 + β1X1 + β2X1×LONG
+ β3X1×LAT + β4X1×LONG 2 + β5X1×LAT 2 + β6X1×LONG 3 + ε′ (β’s have solid lines)
used because X2 was not measured. (A) Shows θ0(τ) and β0(τ) deviating slightly for 
some quantiles (τ).  (B) Shows θ1(τ) and β1(τ) deviating less for higher quantiles. 
(C) - (G) show relatively homogeneous effects of β2(τ), β3(τ), β4(τ), β5(τ), and β6(τ)
across quantiles for the interactions with the cubic polynomial spatial trend.
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simulations suggest that estimating these interactions might be reasonable when using

spatial structure as a surrogate for important unmeasured processes.  Here I also

simulated an estimating model with a full cubic polynomial without interactions with

the measured habitat variable,  y = � X  +� X  + � LAT + � LONG + � LAT  +0 0 1 1 2 3 4
 2

� LONG  + � LAT×LONG + � LAT ×LONG + � LAT×LONG  + � LAT  +5 6 7 8 9
 2  2  2  3

� LONG  + � �.  Some of the parameters for the polynomial trend surface terms10 
 3

exhibited heterogeneity across quantiles, but � (�) for effects of the measured habitat1

variable had similar differences across quantiles as in the more appropriate trend

surface with interaction effects model.  The lesson is that with reasonable amounts of

spatial structuring of unmeasured processes it is still likely that considerable

heterogeneity in responses remains in models that incorporate a spatial trend surface. 

Bias in parameters is not necessarily lessened by including spatial trend.

4. Performance of Regression Quantile Tests for Models with Hidden Bias

Confidence intervals for regression quantile estimates commonly are computed by

inverting rankscore testing procedures.  Interval coverage for estimates made with

hidden bias in the models was estimated with a simulation experiment evaluating Type

I error rates of the asymptotic Chi-square T and permutation F rankscore tests (Chapter

2).  One thousand random samples for n = 20, 30, 60, 90, 150, and 300 were drawn

from the finite population of N = 10,000 blocks for the interference interaction

generating model with no spatial structure, no correlation between measured (X ) and1

unmeasured (X ) variables, and �  = 1.0, � = 0.41, �  = 0.0, and � = -0.0001 as in2 0 1 2 3 

Figure 4.3.  Estimates of � (�) and � (�) were made for each sample, and null0 1
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hypotheses H : � (�) = � (�) , and H : � (�) = � (�) were evaluated, where � (�) were the0 0 0 0 1 1 0

parameter values 5.0662, 2.7230, 2.0720, 1.4503, 1.1368, 0.9186, 0.7304, 0.5935, and

0.3784 and � (�) were the parameter values 0.3445, 0.3533, 0.3464, 0.3034, 0.2139,1

0.1170, 0.0628, 0.0431, and 0.0227 corresponding to � = 0.99, 0.95, 0.90, 0.75, 0.50,

0.25, 0.10, 0.05, and 0.01 quantiles, respectively (Fig. 4.3).  This simulation approach

evaluated whether the confidence interval coverage estimated by inverting the

rankscore tests included the parameter values � (�) and � (�) with the stated confidence0 1

level (1 - �) given that the error distribution included effects of the unmeasured

variable.  Section 3 already established the degree that � (�) and � (�) were biased0 1

relative to � (�) and � (�).0 1

Unweighted estimates and rankscore tests provided liberal error rates for H :0

�
(�) = � (�) for � < 0.90, consistent with simulations when the model form was1 1

completely specified and heterogeneity was >5 standard deviations across the domain

of X (Chapter 2).  It was only at higher quantiles � � 0.90, where there was a reduced

rate of change between 	 (�) (see Fig. 4.3), that unweighted estimates and rankscore1

tests provided reasonable coverage (Fig. 4.7).  The permutation F rankscore test

maintained better Type I error rates than the T rankscore test for smaller samples at

more extreme quantiles (Fig. 4.7), similar to simulations without hidden bias (Chapter

2).  Unweighted estimates and T rankscore tests provided good Type I error rates for H :0



(�) = � (�) across all but the most extreme quantiles (� = 0.01 and 0.99), whereas  F0 0

rankscore tests had slightly liberal error rates because the permutation structure used did

not account for all the sampling variability when null models were forced through the
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origin (Fig.4.8), similar to simulations in Chapter 2.  The double permutation scheme

improved Type I error rates for the permutation F test as demonstrated below for

weighted estimates of � (�).1

Weighted estimates and rankscore tests were simulated by constructing weights

based on the regression quantile parameters for the N = 10,000 finite population (Fig.

4.3).  The pattern of increasing � (�) with increasing � was not a simple location-scale1

form because differences in � (�) were not constant across all �, although they differed1

by a fairly constant amount for 0.20 � � � 0.80 (Fig. 4.3).  A variant of the bandwidth

approach based on changes in � (�) and � (�) near the quantile (�) of interest (Koenker0 1

and Machado 1999) was used to provide weights for weighted estimates and rankscore

tests in simulations.  Weights were, thus, based on the N = 10,000 population and not

estimated for different samples to avoid undue complexity in the simulation

experiment.  Weights were computed by taking the average pairwise difference between

�
(�) and between � (�) in an interval of � ± 0.01 for � = 0.05, 0.10, 0.90, and 0.95 and0 1

in an interval � ± 0.005 for � = 0.01 and 0.99.  For � = 0.25, 0.50, and 0.75 there was

almost constant rate of change in the parameters, and weights were computed based on

pairwise differences in the interval � = [0.25, 0.75].  Weights, w(�), were the reciprocal

of the average pairwise differences divided by the associated interval width used in

their computation (0.01, 0.02, or 0.50): w(0.99) = (48.825 + 0.377X ) ,  w(0.95) =1
-1

(9.195 - 0.041X ) , w(0.90) = (3.270 + 0.051X ) , w(0.75) = w(0.50) = w(0.25) = (0.2861 1
-1 -1

+.0.110X ) , w(0.10) = (0.900 + 0.129X ) , w(0.05) = (0.774 + 0.169X ) , and w(0.01)1 1 1
-1 -1 -1

= (2.589 + 0.288X ) .  Weights, w(�), were then multiplied by y and X to1
-1
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Figure 4.7.  Estimated Type I error rates for α = 0.05 (open) and 0.10 (solid); for the 
T (triangles) and permutation F (circles) rankscore tests for H0: β1(τ) = ξ1(τ) in the
estimating model y = β0X0 + β1X1 + ε′, where ξ1(τ ) were the parameter values
0.344, 0.353, 0.346, 0.303, 0.214, 0.117, 0.063, 0.043, and 0.023 for τ = 0.99, 0.95,
0.90, 0.75, 0.50, 0.25, 010, 0.05, and 0.01 for the N = 10,000 grid cells generated
by the model in Figure 4.3; and for n = 20, 30, 60, 90, 150, and 300.  1,000 random
samples were used for each n.   
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Figure 4.8.  Estimated Type I error rates for α = 0.05 (open) and 0.10 (solid); for the 
T (triangles) and permutation F (circles) rankscore tests for H0: β0(τ) = ξ0(τ) in the
estimating model y = β0X0 + β1X1 + ε′, where ξ0(τ) were the parameter values
5.066, 2.723, 2.072, 1.450, 1.137, 0.919, 0.593, and 0.378 for τ = 0.99, 0.95,
0.90, 0.75, 0.50, 0.25, 010, 0.05, and 0.01 for the N = 10,000 grid cells generated
by the model in Figure 4.3; and for n = 20, 30, 60, 90, 150, and 300.  1,000 random
samples were used for each n.   
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compute weighted regression quantile estimates and their associated rankscore tests as

in Chapter 2.

Type I error rates for H : � (�) = � (�) were maintained for the weighted T test0 1 1

across all quantiles except for � = 0.01 (Fig. 4.9).  The weighted F test had slightly

conservative error rates compared to the weighted T test except for � = 0.90 where they

both maintained correct levels because rates of change in adjacent � (�) and affects of1

the weighting were minimal.  At extreme quantiles and smaller n the weighted T test

became extremely conservative compared to the weighted F test.  The permutation

scheme based on the weighted regression quantile estimates clearly would benefit from

some adjustment because weighted estimates of the null model were forced through the

origin.  The double permutation scheme (Chapter 2) applied to the F test provided

improved Type I error rates compared to the standard permutation scheme, although

probabilities became conservative at more extreme � and smaller n (Fig. 4.10). 

Weighting provided minor improvements to error rates for H : � (�) = � (�) for the T0 0 0

test and little improvement for the standard permutation F test for most quantiles (Fig.

4.11).  Weighting actually made the error rates for the 0.01 quantile more unstable. The

double permutation scheme provided minor improvements for the F test for this

hypothesis.

Type I error rates for the cubic polynomial trend surface were evaluated for the

interference interaction model with no spatial structuring (Fig. 4.3).  Estimates of � (�),0

�
(�), � (�), � (�), � (�), � (�), 	 (�), 
 (�), � (�), � �), and  (�), were made for each1 2 3 4 5 6 7 8 9 10

sample and the null hypothesis H : � (�) = � (�) = ... = � (�) = 0 was tested, where � (�)0 2 3 10 2
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Figure 4.9.  Estimated Type I error rates for α = 0.05 (open) and 0.10 (solid); for the 
T (triangles) and permutation F (circles) rankscore tests for H0: wβ1(τ) = ξ1(τ) in the
estimating model wy= wβ0X0 + wβ1X1 + wε′, where ξ1(τ ) were the parameter 
values 0.341, 0.354, 0.345, 0.302, 0.217, 0.126, 0.068, 0.048, and 0.025 for τ = 0.99,
0.95, 0.90, 0.75, 0.50, 0.25, 010, 0.05, and 0.01 for the N = 10,000 grid cells generated
by the model in Figure 4.3; and for n = 20, 30, 60, 90, 150, and 300.  1,000 random
samples were used for each n.   
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Figure 4.10.  Cumulative distributions of 1,000 estimated errors for the Chi-squared
distributed T (dashed line), permutation F (square dotted line), and double
permutation F (solid line) rankscore tests for H0: wβ1(τ ) = ξ1(τ ) for n = 60 in the
estimating modelwy= wβ0X0 +wβ1X1 + wε′, where ξ1(τ) were the parameter values
0.354, 0.345, 0.217, 0.126, 0.068, and 0.048 for τ = 0.95, 0.90, 0.50, 0.25, 010, and
0.05 for the N = 10,000 grid cells generated by the model in Figure 4.3.  Fine dotted line
is the expected cdf of a uniform distribution. See text for description of weights w(τ).
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Figure 4.10.  Cumulative distributions of 1,000 estimated errors for the Chi-squared
distributed T (dashed line), permutation F (square dotted line), and double
permutation F (solid line) rankscore tests for H0: wβ1(τ ) = ξ1(τ ) for n = 60 in the
estimating modelwy= wβ0X0 +wβ1X1 + wε′, where ξ1(τ) were the parameter values
0.354, 0.345, 0.217, 0.126, 0.068, and 0.048 for τ = 0.95, 0.90, 0.50, 0.25, 010, and
0.05 for the N = 10,000 grid cells generated by the model in Figure 4.3.  Fine dotted line
is the expected cdf of a uniform distribution. See text for description of weights w(τ).
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Figure 4.11.  Estimated Type I error rates for α = 0.05 (open) and 0.10 (solid); for the 
T (triangles) and permutation F (circles) rankscore tests for H0: wβ0(τ) = ξ0(τ) in the
estimating model wy = wβ0X0 + wβ1X1 + wε′, where ξ0(τ) were the parameter
values 5.134, 2.693, 2.110, 1.478, 1.084, 0.802, 0.645, and 0.355 for τ = 0.99, 0.95,
0.90, 0.75, 0.50, 0.25, 010, 0.05, and 0.01 for the N = 10,000 grid cells generated
by the model in Figure 4.3; and for n = 20, 30, 60, 90, 150, and 300.  1,000 random
samples were used for each n.   
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- � (�) were parameters (all zero) for the 9 terms of the full cubic polynomial trend10

surface.  Here Type I error rates were well maintained by both the T and F rankscore

tests because under the alternative model there was no relation between the spatial trend

surface and the response for any quantile (Fig. 4.12).  The permutation evaluation of the

F statistic provided better Type I error rates than the asymptotic Chi-square evaluation

of the T statistic for smaller n at more extreme quantiles, as also observed for models

without hidden bias (Chapter 2).

A small simulation experiment was conducted to evaluate power of the

regression quantile estimates and rankscore tests to detect spatial trend surfaces. 

Samples (n = 1,000) were taken from the spatially structured, interference interaction

population of N = 10,000 blocks (Fig. 4.6), and the model  y = � (�)X  +� (�)X  +0 0 1 1

�
(�)X ×LAT + � (�)X ×LONG + � (�)X ×LAT  + � (�)X ×LONG  + � (�)X ×LONG  2 1 3 1 4 1 5 1 6 1

 2  2  3

was estimated and rankscore tests conducted for H : � (�) = 	 (�) = ... = 
 (�) = 0. 0 2 3 6

Because the simulated effect of the spatial trend surface was homogeneous across

quantiles, no weighting was used in the simulations.  Power greater than 80% with

� = 0.05 was achieved for n � 150 for � = 0.05 - 0.90.  Power was 52% for � = 0.95,

30% for � = 0.01, and 7% for � = 0.99 at n = 150.  The F test had slightly greater power

than the T test for � = 0.01 and 0.99 at n < 150 and equivalent power otherwise.

5. Example Application

Legendre et al. (1997) and Legendre and Legendre (1998:745-746) evaluated the

contributions of spatial trend, physical habitat variables, and biotic interactions to

bivalve mussel distribution and abundance in a New Zealand harbor.  Physical habitat
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Figure 4.12.  Estimated Type I error rates for α = 0.05 (open) and 0.10 (solid); for the 
T (triangles) and permutation F (circles) rankscore tests for H0: β2(τ ) = β3(τ) = , ... , =
β10(τ) = 0 in the estimating model y = β0X0 + β1X1 + β2LAT+ β3LONG + β4LAT 2  +
β5LONG 2 + β6LAT×LONG+ β7LAT 2×LONG+ β8LAT×LONG 2 + β9LAT 3 +
β10LONG 3 + ε′, for τ = 0.99, 0.95, 0.90, 0.75, 0.50, 0.25, 010, 0.05, and 0.01 for the
N = 10,000 grid cells generated by the model in Figure 4.3; and for n = 20, 30, 60, 90,
150, and 300.  1,000 random samples were used for each n.
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variables included sediment characteristics, bed elevation, and hydrodynamic measures

likely to affect larval deposition, transport of juveniles, food supply, and feeding

behavior.  There were many strong correlations among the physical habitat variables

considered.  Biotic interactions considered adult-juvenile interactions by adding

abundance of bivalves in different size classes to the models.  Effects of a spatial trend

surface, abundance of competitors, and habitat conditions were partitioned by

considering nested sets of models in a linear least squares regression (Legendre et al.

1997), following procedures of Borcard et al. (1992).  I explored relationships for one

species, Macomona liliana, using similar procedures but estimated with quantile

regression.  The dependent variable was 22-23 January 1994 counts of  Macomona >15

mm size class in 0.25-m  quadrats randomly located within 200 grid cells on a 250 m ×2

500 m area on the sandflat of Wiroa Island, Manukau Harbor, New Zealand.

Similar steps in modeling bivalve counts used by Legendre et al. (1997) were

followed but several adjustments were made because I used regression quantile

estimates and because I had a slightly different philosophy regarding model selection. 

Because the regression quantile estimates were intended to model heterogeneous

variation in response distributions, I did not normalize bivalve counts by taking

logarithms as did Legendre et al. (1997).  When selecting polynomial terms to include

in the final spatial trend surface model, I considered models with all linear terms; all

linear and quadratic terms; and all linear, quadratic and cubic terms; which resulted in

comparisons of three spatial trend models.  I did not eliminate any individual monomial

term from the set of linear, quadratic, or cubic polynomial terms.
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I used R (�) coefficients of determination (Koenker and Machado 1999) to1

compare fits of different regression quantile models across � = 0.05 - 0.95 by

increments of 0.05.  However, R (�) like R from least squares regression can only1 2 

increase with increasing number of parameters and, thus, it was desirable to have a

statistic that adjusts for inclusion of additional parameters relative to sample size. 

Therefore, I selected among models using a small sample size corrected version of the

Akaike Information Criterion (AIC ) developed by Hurvich and Tsai (1990) for the 0.50c

regression quantile (i.e., least absolute deviation regression) and extended to other

quantiles; AIC (�) = 2n × ln(SAF(�)/n) + 2p(n/(n - p - 1)), where SAF(�) was thec

weighted sum of absolute deviations minimized in estimating the �th quantile

regression with p parameters (including 1 for estimating �).  Appendix 4.1 describes

computations for R (�) and AIC (�) and their justification.  I computed differences1
c

(	AIC (�)) between AIC (�) for more complex models and the simplest model with justc c

a constant (� ) to facilitate comparisons among models in a fashion comparable to using0

coefficients of determination.

The modeling steps that Legendre et al. (1997) and I used were to (1) select an

appropriate polynomial spatial trend surface model for bivalve counts; (2) select an

appropriate model for bivalve counts as a function of the physical environmental

variables; (3) test whether the spatial trend surface explained a significant fraction of

additional variation given that the physical environmental variables were already in the

model; (4) test whether the counts of competitors (bivalves in larger size classes)

explained a significant fraction of additional variation given that the physical
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environmental variables were already in the model; and (5) test whether the spatial

trend surface explained a significant fraction of additional variation given that the

physical environmental and biological (abundance of competitors) variables were

already in the model.  Because  Macomona >15 mm had no competitors by this

protocol, steps (4) and (5) were not conducted for this size class.  I present a condensed

summary of results for counts of  Macomona 0.5-2.5 mm where steps (4) and (5) were

conducted.

Legendre et al. (1997) fit a spatial trend surface model first to determine

whether there was any spatial structuring at the scale of the study plot associated with

effects of ecological processes.  However, I also consider the spatial trend surface as a

potential surrogate for effects of unmeasured processes to be included in models after

having accounted for effects associated with the measured variables.

5.1 Spatial Trend Surface

Plots of R (�) coefficients of determination and AIC (�) across � = 0.05 - 0.95 indicated1
c

that the linear + quadratic + cubic polynomial explained the greatest proportion of

variation in counts of  Macomona >15 mm and was the preferred trend surface model

(Fig. 4.13).  Trend surfaces plotted for the 0.90, 0.50, and 0.10 quantiles (Fig. 4.14) had

similar variation along the northwest to southeast axis as the least squares regression

surface estimated by Legendre et al. (1997), but the regression quantile estimates

indicated greater variation associated with counts in the northwest corner and associated

differences in rates of change in the spatial trend for different quantiles (note the trend

surfaces in Figure 4.14 are not parallel in all regions).  Regression quantile
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Figure 4.13.  R1(τ) coefficients of determination and differences in Akaike 
Information Criteria [∆AICc(τ)] for the linear (diamonds), linear + quadratic (stars),
and linear + quadratic + cubic (circles) polynomial spatial trend surfaces for τ = 0.05
to 0.95 (by increments of 0.05) regression quantilesof Macomona liliana>15 mm
counts in 0.25-m2 quadrats (n = 200), 22-23 January 1994, on the sandflat of Wiroa
Island, Manukau Harbor, New Zealand (data from Legendre et al. 1997).  All 
∆AICc(τ) were computed by subtracting the AICc(τ) for the model with just an
intercept (β0) from the AICc(τ) for the polynomial models.
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estimates established that variation in abundance and not just mean abundance of

Macomona >15 mm had a spatial trend on the Wiroa sandflat.  R (�) coefficients of1

determination indicated substantially more variation explained at higher than at lower

quantiles (Fig. 4.13).  An ordinary least squares regression of Macomona >15 mm

counts (not log transformed) on the same cubic polynomial had an R  = 0.371, which2

when returned to original units rather than squared units by 1 - (1 - R )  (Ehrenberg2 0.5

1975:233) indicated only 0.201 proportion of the variation in Macomona >15 mm

counts was explained by the mean trend surface function.  This was similar to  variation

explained by the central (0.40 < � < 0.60) regression quantile estimates but less than

explained by higher quantiles (Fig. 4.13).

5.2 Physical Habitat

Legendre et al. (1997) found only two physical habitat variables explained any of the

variation in ln mean counts of  Macomona >15 mm: bed elevation (m) and percent of

time the plot was covered by >20 cm of water during spring tide.  These also were the

only physical habitat variables that I found explained any of the variation in quantiles of

large Macomona.  However, these two variables were near perfectly linearly correlated

(r = -0.999), which made physical sense because greater bed elevation is directly related

to less water depth during high tides.  I, therefore, chose to use only bed elevation in the

physical habitat model.  Legendre et al. (1997) used a cubic polynomial of bed

elevation to model the nonlinear response of large Macomona counts (Fig 4.15).  I

initially considered this model too but also examined a simpler quadratic polynomial

and compared models based on R (�) and AIC (�).  There was very little improvement1
c



Figure 4.15.  Counts ofMacomona liliana>15 mm in 0.25-m2 quadrats (n = 200),
22-23 January 1994, on the sandflat of Wiroa Island, Manukau Harbor, New Zealand,
by bed elevation (m).  Solid lines are 0.90, 0.50, and 0.10 regression quantile
estimates ofMacomonacounts as a quadratic function of bed elevation.  Lines with
small dots connect upper and lower Working-Hotelling 80% simultaneous confidence
intervals for predicted 0.90 (upper) and 0.10 (lower) regression quantiles at 28 
selected values of bed elevation.
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in coefficients of determination by going to the cubic compared to the quadratic

polynomial (Fig. 4.16).  Differences in 	AIC (�) supported use of the cubic polynomial c

of bed elevation only for 0.80 - 0.85 quantiles.   An examination of the cubic

polynomial model of bed elevation suggested that regression quantile fits that were

better with the cubic term were greatly influenced by the outlying minimum elevation

value of 1.95 m.   Removing this influential value and estimating quadratic and cubic

polynomial models and associated fit and model selection statistics again indicated

even less support for including the cubic bed elevation term.

The quadratic response of large Macomona to bed elevation captured the higher

counts at lower and higher bed elevations and increasing variation in counts at higher

elevations (Fig. 4.15).  Unweighted estimates and 90% confidence intervals for linear

(b ) and quadratic (b ) terms indicated increasingly negative linear and increasingly1 2

positive quadratic terms with increasing � above 0.50 (Fig. 4.17).  Nonlinear changes in

large Macomona with respect to bed elevation were greater for higher quantiles.

Although heterogeneity in counts across bed elevation was not extreme, I constructed

weighted regression quantile estimates for � = 0.05 - 0.95 by increments of 0.05, where 

weights were estimated separately for each individual quantile with a variant of the

bandwidth approach used by Koenker and Machado (1999).  I used the Hall and

Sheather (1988) bandwidth selection rule recommended by Koenker and Machado

(1999) but did not use their approach of taking differences between estimates for the

highest and lowest quantile within the bandwidth.  Instead, weights were computed by

taking the average pairwise difference between all unweighted quantile estimates for
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Figure 4.16.  R1(τ) coefficients of determination and differences in Akaike
Information Criteria [∆AIC c(τ)] for the linear + quadratic (squares) and linear +
quadratic + cubic (triangles) functions of bed elevation (m) forτ = 0.05 to 0.95 
(by increments of 0.05) regression quantiles ofMacomona liliana>15 mm counts
in 0.25-m2 quadrats (n = 200), 22-23 January 1994, on the sandflat of Wiroa Island,
Manukau Harbor, New Zealand.  All ∆AIC c(τ) were computed by subtracting the
AICc(τ) for the model with just an intercept (β0) from the AICc(τ) for the
polynomial models.
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Figure 4.17.  Estimates for intercept [b0(τ)], linear [b1(τ)], and quadratic [b2(τ)] terms
for regression quantiles ofMacomona liliana>15 mm counts in 0.25-m2 quadrats
(n = 200), 22-23 January 1994, on the sandflat of Wiroa Island, Manukau Harbor,
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weighted estimates. Dashed lines connect pointwise 90% confidence intervals based
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b (�), b (�), and b (�) within the interval � ± h(�), where h(�) was the bandwidth for a0 1 2

specified quantile.  This reduced the number of negative weights due to crossing of

regression quantile estimates at extreme regions of the design matrix that occurred with

the method used by Koenker and Machado (1999).  Still, small constants had to be

added to the average pairwise differences for b (�) to assure positive weights for a0

couple of quantiles.  Example calculations for the weights are in Appendix 4.2.

Weighted estimates for the quadratic polynomial terms of bed elevation

followed a similar pattern of changes with quantiles as the unweighted estimates,

although weighted estimates smoothed over a little detail because they were only done

for 19 increments of  � between 0.05 and 0.95 (Fig. 4.17).  The 90% confidence

intervals for the weighted estimates were slightly narrower than those for the

unweighted estimates at most higher quantiles.  One unusually large upper endpoint of

the interval for the unweighted estimate b (0.60) was eliminated in the weighted0

estimate.  The overall pattern and inference for weighted estimates did not differ

substantially from those for unweighted estimates.   This was consistent with the

moderate amount of heterogeneity in Macomona >15 mm counts across bed elevation

(Fig. 4.15).

A simultaneous 80% prediction interval on the central 80% of Macomona >15

mm as a function of bed elevation was estimated by constructing simultaneous

confidence intervals for the 0.10 and 0.90 regression quantile estimates at 25 values of

bed elevation between 2.10 and 3.30 m (Fig. 4.15).  The simultaneous prediction

intervals emulated the Working-Hotelling simultaneous confidence intervals (Neter et
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al. 1996:234) for estimates b (�) with bed elevation shifted by the 25 selected values for0

prediction; the zero intercept was shifted to correspond to the selected values of bed

elevation (Chapter 2).  Two-sided intervals were constructed by inverting the weighted

quantile rankscore test with an � = 0.0316 [1 - prob. F((3 × F(0.80, 3, 197)), 1, 197)]

with the upper part of the interval for b (0.90) and the lower part of the interval for0

b (0.10).  The interval displayed in Figure 4.15 was, thus, a statement about where the0

central 80% of Macomona >15 mm would be expected to occur with respect to bed

elevation in 80% of repeated random samples.  Note that lower intervals for � = 0.10

and bed elevation �2.5 m extended below zero counts, a nonsensical value.  The wide

intervals here were likely due to fewer observations with bed elevations �2.5 m and

because the lower portion of the distribution of large Macomona counts were not as

well defined as the upper part.  Slight irregularities in the upper and lower simultaneous

confidence intervals should not be over interpreted as they likely occurred due to the

vagaries of interpolating between discrete probabilities associated with the rankscore

test statistics (Chapter 2).  Use of a more stringent confidence level such as 90%

required smaller individual �’s that resulted in intervals with greater irregularities.

5.3 Physical Habitat Plus Spatial Trend

Including the cubic polynomial spatial trend surface indicated that there was additional

variation in Macomona >15 mm abundance that was spatially structured after

accounting for effects of bed elevation (Fig. 4.18).  Changes in 	AIC (�) clearlyc

supported the model with bed elevation and the spatial trend surface over the model

with just bed elevation (Fig.4.18), but the relative sampling frequency probabilities for
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lower (� � 0.20) and higher (� � 0.85) quantiles indicated the joint effects of the

polynomial spatial coefficients were not different from zero.  Because bed elevation

itself was spatially structured (Legendre et al. 1997), estimated effects of bed elevation

after adjusting for spatial trend were attenuated and reversed in sign because they were

confounded with other processes associated with spatial trend (Fig. 4.19).  In this

model, 90% confidence intervals for bed elevation included zero for all quantiles (Fig.

4.19).  Here only unweighted estimates were used, as the previous analysis on bed

elevation suggested effects of heterogeneity were not great enough for weighted

confidence intervals to differ substantially from unweighted ones.  The cubic

polynomial spatial trend surface model explained nearly as much variation as the model

that included quadratic bed elevation and cubic spatial trend (compare Figs. 4.13 and

4.18).  The cubic polynomial spatial trend surface given effects of bed elevation

retained most of the northwest to southeast variation estimated by the spatial trend

surface alone, except that some of the variation in the southeast corner was attenuated

(compare Figs. 4.19 and 4.14).  When the R  = 0.33 for the physical habitat and spatial2

trend of ln mean abundance of large Macomona estimated by Legendre et al. (1997) is

converted into original units [0.18 = 1 - (1 - 0.33) , Ehrenberg 1975:233), it is obvious0.5

that the regression quantile estimates (not in ln scale) for a similar model explained a

greater proportion of variation across � �0.40 (Fig. 4.18).

5.4 Summary for Macomona 0.5-2.5 mm

Abundance of Macomona 0.5-2.5 mm was determined for 3 cores totaling 0.04-m2

within the 0.25-m  primary quadrats (Legendre et al. 1997).  Counts ranged from 0 to2
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12.  Following the previous steps outlined including steps 4 and 5 that added effects of 

biological competitors, I estimated regression quantiles for counts (not ln counts) of

small Macomona as a function of 4 physical habitat variables, 4 physical habitat

variables plus quadratic spatial trend, 4 physical habitat variables plus abundance of 3

biological competitors, and 4 physical habitat variables plus abundance of 3 biological

competitors plus quadratic spatial trend (Fig. 4.20).  Comparisons of  R (�) and AIC (�)1
c

selected the same variables used by Legendre et al. (1997) for their mean ln abundance

model, with several minor changes.  I retained all terms of the quadratic polynomial

spatial trend surface.   I did not consider including both bed elevation and proportion of

the time the plot was covered by >20 cm water during spring tide because they were

near perfectly correlated.  The 4 physical habitat variables used were a linear function

of bed elevation (m), shell hash (g, not square root transformation), peak ebb-tide bed

shear stress (N·m ) and peak flood-tide bed shear stress (N·m , not log transformed). -2 -2

Transformations used by Legendre et al. (1997) for shell hash and flood-tide shear

stress were not required for obtaining reasonable regression quantile estimates.  The 3

variables measuring potential biological competitors included counts (not ln

transformed) of Macomona 2.5-4.0 mm, Austrovenus stutchburyi 0.5-2.5 mm, and

Austrovenus 2.5-4.0 mm.

Low proportion of variation explained by all models at lower quantiles (� <0.20)

was due to the proportion of zero counts that were modeled as well with just a constant

(Fig. 4.20).  After R (�) increased up to � = 0.35, there was a fairly constant1

amount of variation explained by all higher quantiles regardless of the model.  This was



Figure 4.20.  R1(τ) and ∆AICc(τ) for the physical habitat model as a linear function of bed elevation (m),
shell hash (g), ebb-tide shear stress (N·m-2), and flood-tide shear stress (N·m-2) (squares); for the quadratic
polynomial spatial trend surface (diamonds); for the physical habitat + quadratic spatial trend surface
(circles); for the physical habitat + biological competitors as a linear function of Austrovenus0.5-2.5 mm,
Austrovenus 2.5-4.0 mm, andMacomona2.5-4.0 mm counts (triangles); and for the physical habitat + 
biological competitors + quadratic spatial trend surface (stars) for τ = 0.05 to 0.95 (by increments of 0.05)
regression quantiles of Macomona liliana 0.5-2.5 mm counts in 0.04-m2 quadrats (n = 185), 22-23 January
1994, on the sandflat of Wiroa Island, Manukau Harbor, New Zealand.  All ∆AICc(τ) were computed as in
Figure 4.13.  Symbol sizes for R1(τ) are proportional in size to P(H0: 4 physical habitat parameters = 0) 
(squares); P(H0: quadratic spatial trend surface parameters = 0) (diamonds); P(H0: quadratic spatial trend
surface parameters = 0|4 physical habitat parameters) (circles);P(H0: 3 biological competitor parameters
= 0|4 physical habitat parameters) (triangles); P(H0: quadratic spatial trend surface parameters = 0|4
physical habitat + 3 biological competitor parameters) (stars) from the permutation F rankscore test; largest
symbol is for P ≥ 0.20 and smallest is for P < 0.01.  P for T rankscore tests were similar.
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consistent with the low range of variation in counts of Macomona 0.5-2.5 mm. 

Estimated effects for physical habitat variables were increasingly negative for shell hash

with increasing �, positive for flood-tide shear stress and increasing for � >0.80,

increasingly positive for ebb-tide shear stress up to � = 0.80 then increasingly negative

for � >0.80, and positive for bed elevation and increasing for � >0.60.  Estimated effects

for abundance of biological competitors were positive and increasing with � for

Macomona 2.5-4.0 mm, Austrovenus 2.5-4.0 mm, and Austrovenus 0.5-2.5 mm.  My

estimated quantile regression effects of biological competitors were positive as were

effects estimated by Legendre et al. (1997), suggesting that they were not measuring

competition for resources but may have been surrogates for unmeasured physical

factors that affected deposition and settlement of juveniles similarly across taxa.

Differences in quantile regression models of abundance parallel those of the 

mean ln abundance regression models estimated by Legendre et al. (1997) except that

the regression quantile estimates suggested that variation due to quadratic spatial trend

existed even after including the 4 physical habitat and 3 biological competitor variables. 

However, relative sampling frequency probabilities associated with � � 0.75 suggested

the joint effects of quadratic polynomial terms were not different from zero when

considering spatial trend added to either the model with just physical habitat or the

model with physical habitat and biological competitor abundance (Fig. 4.20).  The

quadratic spatial trend surface after adjusting for physical habitat and abundance of

potential biological competitors had its main axis of change from the southeast to

northwest with greater variation in abundance in the southeastern part of the sandflat. 
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Transforming R  = 0.41 estimated by Legendre et al. (1997) for the physical habitat,2

biological competitors, and quadratic spatial trend model to original units [0.23 = 1 - (1

- 0.41) ] indicated that the amount of variation explained by the mean ln abundance0.5

model was comparable to that explained for most quantiles (� > 0.35) of abundance

with a similar model (Fig. 4.20).  However, Legendre et al. (1997) concluded that

quadratic spatial trend did not explain a significant proportion of variance in mean ln

abundance after accounting for physical habitat and biological competitors, whereas my

estimates indicated that it did for most quantiles (� < 0.75) of abundance.

6. Discussion

The example simulations demonstrated how heterogeneous and nonlinear relations in

habitat models can easily arise from confounding with some important but unmeasured

processes.  More complicated arguments are not required to explain why heterogeneity

and nonlinearities are so common in statistical models of animal responses to their

habitat resources.  Although the dimensions of the measured habitat variables (X ) and1

the unmeasured limiting factors (X ) were kept to single variables for my simulation2

purposes, it is reasonable to extend interpretation of these simulation results to greater

dimensions by thinking of X  and X  as being the composite additive effect of >21 2

variables.  More complicated interactions involving both interference (- coefficients)

and facilitation (+ coefficients) interactions should be additive and may have attenuated

overall effect depending on the magnitude of the separate effects.  My presentation of

the simulations focused on confounding with unmeasured variables not related to

habitat resources.  It is easy to extend my results and interpretations to situations where
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confounding occurs with some important habitat resources that were not measured and

included in the model used for estimation. 

The philosophy embodied in my simulations reflect a view that most ecological

relations have an appearance of randomness not because they are inherently random but

because we are always estimating them with incomplete information (Regan et al.

2002).  As long as random variation induced by missing information is small and

homogeneous, conventional regression estimation procedures (e.g., least squares) may

provide useful, reasonable estimates of conditional relationships.  When missing

information is for processes of substantial importance to an organism, it is reasonable to

expect large, heterogeneous random variation and estimates with hidden bias.  While all

organisms are dependent on some suite of resources obtained from their habitat, at

many times and locations other factors may actually exert more influence on organism

growth, survival, reproduction, and dispersal, causing a perceived disconnection

between the organism and the requisite habitat resources.  Garshelis (2000) and

Morrison (2001) both have argued for improving our knowledge of animal habitat

relations by focusing modeling efforts on more specifically defined resources and

relating them to demographic parameters such as survival and reproductive rates that

ultimately contribute to differences in abundance.  These are reasonable suggestions. 

But, neither a more focused definition of what constitutes a habitat resource or

measuring alternative demographic parameters will eliminate issues of hidden bias due

to confounding between measured habitat covariates and unmeasured ones associated

with other processes.      
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Inference procedures based on rankscores for regression quantile estimates

provided valid intervals reflecting the sampling distribution of parameter estimates for

the measured habitat processes, but the parameters clearly were biased relative to the

parameters generating the responses.   In applications, the degree of hidden bias will be

greater or lesser for different quantiles depending on the nonestimable interaction

effects and unknown error distributions.  If it is possible to rule out certain types of

interaction effects (e.g., facilitation) with unmeasured processes, then we might

profitably focus estimation and inference procedures for quantile regression at one end

of the probability distribution (e.g., upper quantiles).  In the absence of such knowledge,

it would appear prudent to obtain estimates and confidence intervals across the entire

interval of quantiles that provide reliable estimates (e.g., 0.05 - 0.95).  I encourage the

use of prediction intervals, and especially simultaneous prediction intervals or tolerance

intervals, as a strong antidote to overzealous expectations that any habitat model can

provide precise predictions.  It simply is not reasonable to expect that habitat models

should provide very precise predictions when they exclude many other important

processes.  However, this does not imply that useful predictions are impossible with

habitat models, especially for management or conservation purposes.  We simply have

to use better procedures for characterizing intervals of response such as those presented

here and have more realistic expectations about predicting changes in populations due

to changes in habitat, a process that interacts with other processes that we often barely

understand or know how to measure.
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Prediction and tolerance intervals provide confidence statements related to

individual observational units (Vardeman 1992).  These were areal plots in my

simulations and example application.  Prediction and tolerance intervals based on my

regression quantiles are semiparametric in nature because they don’t assume a specific

parametric form for the unknown error distribution.  They are likely to be much more

informative for characterizing the real uncertainty in habitat models and for making

predictions useful for management or conservation purposes than confidence intervals

on mean rate parameters or responses.  We never observe a mean response across

observational units, only responses for individual units.   Management or conservation

actions are implemented on individual units of area in a landscape.  Estimating an

interval of responses likely for these individual areas provides more knowledge about

what outcomes might be realized than is provided by confidence intervals associated

with mean responses or any other individual parameter.  Scientific attempts to improve 

predictions from habitat models are based on measuring observed outcomes relative to

predictions necessarily obtained from measurements on individual units of area. 

Understanding the contexts where habitat models fail or succeed as predictors of

population change can only be gained by considering contextual information for

individual units of area on landscapes.    

My simulation results demonstrated that heterogeneity that arises due to

confounding between measured and unmeasured variables often will not be a simple

location-scale form.  In this situation, weighted regression quantile estimates and

rankscore tests require estimating weights that are based on changes in a local interval
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of quantiles around a specific quantile rather than globally applied across all quantiles. 

I used a minor modification of bandwidth estimation procedures developed by Hall and

Sheather (1988) as extended to regression quantiles by Koenker and Machado (1999). 

Although adequate, there clearly is room for improvement in these procedures,

including automating their computation in the necessary software.

My use of 	AIC  for model selection with the bivalve data was an attempt toc

extend Hurvich and Tsai (1990) procedures for median regression (0.5 quantile) to

other quantiles.  The fact that some large 	AIC  between models at high and lowc

quantiles were associated with sampling distributions of parameter estimates that did

not differ from zero was a little disconcerting.  This may reflect a failure of this

extension of AIC , that the sampling distribution of estimates is not well represented inc

information criteria like AIC , or that I extended estimates and inferences too far intoc

the extreme quantiles for them to be reliable.  Machado (1993) discussed extension of

Schwarz information criterion (SIC) to robust M-estimates, including median

regression, for linear models.  Additional research on application of information criteria

to regression quantile model selection is clearly warranted.

Use of cubic polynomials of location coordinates to estimate spatial trend

surfaces provided a reasonable method for modeling larger scale spatial gradients of

responses (Legendre et al. 1997) that are of most interest for models generalizing

animal responses to habitat.  Spatial trend surfaces provided an indication of spatial

variation in organism response which would suggest effects of some relevant ecological

processes (Legendre et al. 1997) and provided a method for accounting for some of the 
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variation due to unmeasured processes that were spatially structured.   However, it is

important to remember that gradients in space offer no ecological interpretation per se

(Legendre et al. 1997).  It is in fact possible to defeat the entire purpose of developing

general habitat relationships by over reliance on modeling spatial structure.  Consider

the models of Macomona >15 mm as a function of bed elevation and spatial structure. 

There was more variation in large Macomona abundance explained by the spatial trend

surface alone than by the nonlinear bed elevation model.  A parsimonious model that

explained most variation with fewest parameters would be the cubic spatial trend

surface model.  Yet, this model of bivalve counts based on spatial gradients on one

sandflat has little chance of generalizing to other locations because it includes no

information on ecological processes.  The cubic spatial trend does suggest that spatially

structured processes are operating within the scale of the sampled 250 m × 500 m area

(Legendre et al. 1997).  There is greater potential for generalizing the bed elevation

relationship to other locations to the extent that bed elevation is related to

hydrodynamic processes affecting settlement, feeding, and survival of bivalves.

An extreme form of spatial modeling that defeats the generality desired in most

habitat models is including indicator variables for different geographic locations.  This

model structure allows for different relationships with the habitat covariates for every

geographic location, i.e., unequal slopes and intercepts in a separate regression model. 

This might be justified based on statistical measures for regression model selection, fit,

or hypothesis testing.  Yet, separate relationships for each geographic location would

seem to completely defeat our desire for developing general relationships in ecology. 
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With quantile regression, it is possible to have different geographic locations associated

with different quantiles of one common model, e.g., Dunham et al. 2002.  The

difference from a statistical standpoint is whether to assume one common probability

model with different locations (contexts) associated with different portions of the

probability distribution (quantiles), or whether to assume separate probability models

associated with each location.  A desire to generalize to other places and times with

habitat relationship models suggests that the common probability model might be more

informative.        
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Appendix 4
Appendix 4.1.

The R (�) coefficient of determination was the proportionate reduction in the objective1

function minimized when passing from a constrained parameter quantile regression

model to some unconstrained parameter model (Koenker and Machado 1999).  My

implementation of  R (�) = 1- (SAF(�)/SAR(�)) used1

for the reduced parameter model constrained to just a

constant and used for the unconstrained full parameter

model.  This coefficient of determination was identical to the one used by Cade and 

Richards (1996) when � = 0.50.

The AIC (�) = -2 l(�) + 2p(n/(n - p - 1)), where l(�) was the log-likelihood for thec

�th regression quantile and p was the number of parameters in the model (Hurvich and

Tsai 1990).  The likelihood used in the regression quantile AIC (�) assumed a doublec

exponential distribution with density function f (e) = �(1 - �)exp[-� (e)/�]/� and� �

variance � , where � (e) = e(� - I(e < 0)) was the check function used in minimizing the2
�

asymmetrically weighted sum of absolute deviations for regression quantiles (Koenker

and Machado 1999).  The log-likelihood l(�) = nln(�(1 - �)) -nln� - � [n� (e)] and -2l(�) -1
�

with SAF(�)/n as an estimate of � plugged in reduced to -2nln(�(1 - �))  +
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2nln(SAF(�)/n) + 2n, where SAF(�) was the weighted sum of absolute deviations

minimized for the �th regression quantile estimate as above (Hurvich and Tsai 1990). 

In my implementation of AIC (�) to compare among models by quantile �, I eliminatedc

the terms -2nln(�(1 - �)) + 2n because they were constants for any specified � and, thus,

cancelled when computing differences in AIC (�) between models by quantilec

[	AIC (�)].c

Limited simulation work by Hurvich and Tsai (1990) and McQuarrie and Tsai

(1998) indicated that model selection based on AIC  for the 0.50 regression quantilec

was insensitive to occurrence of other error distributions than the double exponential

assumed by the likelihood computations.  Likelihoods for quantile regression for

distributions other than the double exponential involve the multiplicative term

�(�)/[�(1 - �)s(�)], where s(�) = 1/f(F (�)) is the quantile density function (Koenker and-1

Machado 1999).   Since these terms would be constants in the likelihoods when

comparing models using AIC (�) that assumed a common error distribution other thanc

the double exponential, they would be irrelevant to the computed differences

(	AIC (�)).  The small sample, parameter penalty term in AIC (�), 2p(n/(n - p - 1)), wasc c

based on normal distribution assumptions for least squares regression.  Hurvich and

Tsai (1990) and McQuarrie and Tsai (1998) found that more complex penalty terms

suited for least absolute deviation regression and double exponential error distributions

did not yield improved performance over the simpler term in AIC .c
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Appendix 4.2.

An example of computations for the quantile interval weights based on a modification

of the method proposed by Koenker and Machado (1999) is provided for the 0.90

quantile for the model including bed elevation and bed elevation .  The Hall and2

Sheather (1988) bandwidth rule assuming a normal distribution (for convenience) is

h(�) = n z [1.5� (
 (�))/2(
 (�))  + 1)] , where z  satisfies 
(z ) = 1 - �/2, 
 is the-1/3 2/3 2 -1 -1 2 1/3
� � �

cdf and �  is the pdf of the standard normal distribution; and for the 0.90 quantile, � =

0.10, and n = 200 yielded a recommended bandwidth of  h(0.90) = 0.05264.  The

estimates b (�), b (�), and b (�) were obtained for all quantiles in the interval 0.90 ±0 1 2

h(0.90) � [0.84736, 0.95264].  This interval contained  22 regression quantile estimates,

and the average pairwise difference between them was 81.0003 for b (�), 56.5343 for0

b (�), and 9.98316 for b (�).  Plots of b (�) and b (�) by � were examined to determine1 2 1 2

the sign of the rates of change to assign to the estimated difference coefficients.  For

this quantile the weights were w(0.90) = (2 × 0.05264)/(81.0031 - 56.5343 × bed

elevation + 9.9832 × bed elevation ).  Plots of the weights as a function of bed elevation2

were examined to check for any negative weights; none occurred for w(0.90).  When

negative weights were encountered a small constant was added to the denominator of

the function to shift them all to positive values while preserving their relative value. 

The weights were then multiplied by Macomona >15 mm counts (y), bed elevation (X )1

and bed elevation  (X ) to estimate the 0.90 quantile regression for the model w(0.90)y2
2

= w(0.90) + w(0.90)X  + w(0.90)X and to compute confidence intervals based on1 2  

inverting the quantile rankscore tests.  


